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Memory Hierarchies

● data transfer speeds to main memory are very slow 
compared to the CPU’s arithmetic performance

● to transfer a single data item from memory, an initial waiting 
time, called latency, occurs until bytes can actually flow

● latency is typically defined as the time it takes to transfer a 
zero-byte message

● Memory latency is usually of the order of several hundred 
CPU cycles

● caches can alleviate the effects of the DRAM gap in many 
cases



  

Cache Memory

● Caches are low-capacity, high-speed memories
● Main memory (RAM) is much slower but also much larger than 

cache
● Generally, the “closer” a cache is to the CPU’s registers, its 

bandwidth is higher while the latency is lower, 
● But, the smaller it must be to keep administration overhead low
● Cache miss and cache hit
● Caches can only have a positive effect on performance if the 

data access pattern of an application shows some locality of 
reference, that is: data items that have been loaded into cache 
are to be used again “soon enough”



  

Cache Memory

● Caches can only have a positive effect on performance if the 
data access pattern of an application shows some locality of 
reference, that is: data items that have been loaded into cache 
are to be used again “soon enough”

Figure: 
Performance gain 

vs 
cache reuse ratio



  

Cache Memory Mapping

● no restriction on which cache line can be associated with 
which memory locations - fully associative cache

● limitations: 
● for each cache line the cache logic must store its location 

in the CPU’s address space, and each memory access 
must be checked against the list of all those addresses

● the decision which cache line to replace next if the cache 
is full is made by some algorithm implemented in hardware



  

Cache Memory Mapping
● cache which maps the full cache size repeatedly into memory - 

direct-mapped cache
● memory locations that lie a multiple of the cache size apart are 

always mapped to the same cache line 
● the cache line that corresponds to some address can be 

obtained very quickly by masking out the most significant bits
● disposed toward cache thrashing: cache lines are loaded into 

and evicted from cache in rapid succession



  

Cache Memory Mapping

● set-associative cache is divided into m direct-mapped caches equal 
in size, so-called ways

● the number of ways m is the number of different cache lines a 
memory address can be mapped to

● for each cache level, the tradeoff between low latency and 
prevention of thrashing must be considered by processor designers

● innermost (L1) caches tend to be less set-associative than outer 
cache levels



  

Prefetching

● The problem of latency on the first miss
● Assuming a typical commodity system with a memory latency of 

100 ns and a bandwidth of 4 GBytes/sec, a single 128-byte cache 
line transfer takes 32 ns, so 75 % of the potential bus bandwidth is 
unused

● Obviously, latency has an even more severe impact on 
performance than bandwidth



  

Prefetching

● The latency problem can be solved in many cases, however, by 
prefetching 

● Prefetching supplies the cache with data ahead of the actual 
requirements of an application



  

Prefetching

● The number of prefetches required for hiding the latency 
completely: If Tl is the latency and B is the bandwidth, the transfer 
of a whole line of length Lc DP words takes a time of

● One prefetch operation must be initiated per cache line transfer, 
and the number of cache lines that can be transferred during time T 
is the number of prefetches P that the processor must be able to 
sustain

● As an example, for a cache line length of 128 bytes (16 DP words), 
B = 6.4 Gbytes/sec and Tl = 140 ns we get P = 160/20 = 8 
prefetches



  

Multi-core processors

● although Moore’s Law is still valid, standard microprocessors 
are starting to hit the “heat barrier”

● architectural advances and growing cache sizes alone will not 
be sufficient to keep up the one-to-one correspondence of 
Moore’s Law with application performance

● possible solution is in the form of multi-core designs
● Power dissipation of modern CPUs is proportional to the third 

power of clock frequency fc 



  

Multi-core processors

● Assuming that a single core with clock frequency fc has a 
performance of p and a power dissipation of W, some relative 
change in performance εp = ∆p/p will emerge for a relative 
clock change of εf = ∆fc/fc 

● |εf| is an upper limit of |εp|
● Power dissipation is W + ∆W = W (1+εf)

3
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Multi-core processors

● place more than one CPU core on the same die while keeping the 
same power envelope as before

● (1+εf)
3 m = 1 ⇒ εf = m−1/3 − 1

● the required relative frequency reduction with respect to the 
number of cores

● the overall performance of the multi-core chip: pm = (1+εp)pm
● limit on the performance penalty for a relative clock frequency 

reduction of εf that should be observed for multi-core to stay 
useful:  εp > 1/m - 1



  

CPU vs Core vs Thread

● microprocessor, processor or simply CPU, is a single chip
● communications between the different processors of a 

multiprocessor system are very inefficient since they have to 
be done through the system bus

● in order to improve this situation the HyperThreading 
technology was invented

● duplicating some CPU internal components within the same 
chip, such as registers or first level caches

● miniaturizing all processor components and encapsulating 
them next to others in a single chip

● each of these encapsulated processors is called core
● communications between them by means of an internal bus 



  

CPU vs Core vs Thread



  

CPU vs Core vs Thread



  

Parallel computing

● The parallel computing is when a number of processors 
(cores) solve a problem in a cooperative way

● All supercomputers’ architectures depend on parallelism



  

Basic principles of parallelism

● Parallelization is the process of formulating a problem in a 
way that lends itself to concurrent execution by several 
“execution units”

● Ideally, the execution units are initially given some amount 
of work to do which they execute in exactly the same 
amount of time

● Using N units, a problem that takes a time T to be solved 
sequentially, will now take only T/N. 

● We call this a speedup of N.
● How well a task can be parallelized is usually quantified by 

some scalability metric



  

Parallelization strategies

● Data parallelism: Many simulations in science could be 
represented with a simplified picture of reality in which a 
computational domain is represented as a grid of discrete 
positions for the physical quantities under consideration.  
The work is distributed across processors, and a part of the 
grid is assign to each CPU. This is called domain 
decomposition.

● Functional (or task) parallelism: Solving a complete 
problem can be split into more or less disjoint subtasks. 
The tasks can be worked on in parallel, using appropriate 
amounts of resources so that load imbalance is kept under 
control.



  

Data parallelism
● As an example consider a two-dimensional simulation code that 

updates physical variables on a n×n grid
● Domain decomposition subdivides the computational domain 

into N subdomains
● The computational effort should be equal for all domains to 

avoid load imbalance
● It may be necessary to communicate data across domain

boundaries
● The communication cost grows linearly with the distance that 

has to be bridged in order to calculate observables at a certain 
point of the grid



  

Functional parallelism

● Spliting a complete problem into disjoint subtasks that can 
be worked on in parallel

● For instance, assign some resources to communication 
and others to computational work



  

Performance models for parallel scalability

● In a simple model, the overall problem size (“amount of 
work”) shall be  s + p = 1

● The 1-CPU (serial) runtime for this case:

● Solving the same problem on N CPUs:

● This is called strong scaling because the amount of work 
stays constant no matter how many CPUs are used

● Here the goal of parallelization is minimization of time to 
solution for a given problem



  

Performance models for parallel scalability

● For larger problem sizes, for which available memory is the 
limiting factor, it is appropriate to scale the problem size with 
some power of N so that the total amount of work is  s + pNα

● The serial runtime for the scaled problem is defined as:

● The parallel runtime is:

● This approuch is called weak scaling



  

Scalability limitations



  

Scalability limitations
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