

Primena super-računara
u astronomiji

Memory Hierarchies

Memory Hierarchies

● data transfer speeds to main memory are very slow
compared to the CPU’s arithmetic performance

● to transfer a single data item from memory, an initial waiting
time, called latency, occurs until bytes can actually flow

● latency is typically defined as the time it takes to transfer a
zero-byte message

● Memory latency is usually of the order of several hundred
CPU cycles

● caches can alleviate the effects of the DRAM gap in many
cases

Cache Memory

● Caches are low-capacity, high-speed memories
● Main memory (RAM) is much slower but also much larger than

cache
● Generally, the “closer” a cache is to the CPU’s registers, its

bandwidth is higher while the latency is lower,
● But, the smaller it must be to keep administration overhead low
● Cache miss and cache hit
● Caches can only have a positive effect on performance if the

data access pattern of an application shows some locality of
reference, that is: data items that have been loaded into cache
are to be used again “soon enough”

Cache Memory

● Caches can only have a positive effect on performance if the
data access pattern of an application shows some locality of
reference, that is: data items that have been loaded into cache
are to be used again “soon enough”

Figure:
Performance gain

vs
cache reuse ratio

Cache Memory Mapping

● no restriction on which cache line can be associated with
which memory locations - fully associative cache

● limitations:
● for each cache line the cache logic must store its location

in the CPU’s address space, and each memory access
must be checked against the list of all those addresses

● the decision which cache line to replace next if the cache
is full is made by some algorithm implemented in hardware

Cache Memory Mapping
● cache which maps the full cache size repeatedly into memory -

direct-mapped cache
● memory locations that lie a multiple of the cache size apart are

always mapped to the same cache line
● the cache line that corresponds to some address can be

obtained very quickly by masking out the most significant bits
● disposed toward cache thrashing: cache lines are loaded into

and evicted from cache in rapid succession

Cache Memory Mapping

● set-associative cache is divided into m direct-mapped caches equal
in size, so-called ways

● the number of ways m is the number of different cache lines a
memory address can be mapped to

● for each cache level, the tradeoff between low latency and
prevention of thrashing must be considered by processor designers

● innermost (L1) caches tend to be less set-associative than outer
cache levels

Prefetching

● The problem of latency on the first miss
● Assuming a typical commodity system with a memory latency of

100 ns and a bandwidth of 4 GBytes/sec, a single 128-byte cache
line transfer takes 32 ns, so 75 % of the potential bus bandwidth is
unused

● Obviously, latency has an even more severe impact on
performance than bandwidth

Prefetching

● The latency problem can be solved in many cases, however, by
prefetching

● Prefetching supplies the cache with data ahead of the actual
requirements of an application

Prefetching

● The number of prefetches required for hiding the latency
completely: If Tl is the latency and B is the bandwidth, the transfer
of a whole line of length Lc DP words takes a time of

● One prefetch operation must be initiated per cache line transfer,
and the number of cache lines that can be transferred during time T
is the number of prefetches P that the processor must be able to
sustain

● As an example, for a cache line length of 128 bytes (16 DP words),
B = 6.4 Gbytes/sec and Tl = 140 ns we get P = 160/20 = 8
prefetches

Multi-core processors

● although Moore’s Law is still valid, standard microprocessors
are starting to hit the “heat barrier”

● architectural advances and growing cache sizes alone will not
be sufficient to keep up the one-to-one correspondence of
Moore’s Law with application performance

● possible solution is in the form of multi-core designs
● Power dissipation of modern CPUs is proportional to the third

power of clock frequency fc

Multi-core processors

● Assuming that a single core with clock frequency fc has a
performance of p and a power dissipation of W, some relative
change in performance εp = ∆p/p will emerge for a relative
clock change of εf = ∆fc/fc

● |εf| is an upper limit of |εp|
● Power dissipation is W + ∆W = W (1+εf)

3

Multi-core processors

Multi-core processors

● place more than one CPU core on the same die while keeping the
same power envelope as before

● (1+εf)
3 m = 1 ⇒ εf = m−1/3 − 1

● the required relative frequency reduction with respect to the
number of cores

● the overall performance of the multi-core chip: pm = (1+εp)pm
● limit on the performance penalty for a relative clock frequency

reduction of εf that should be observed for multi-core to stay
useful: εp > 1/m - 1

CPU vs Core vs Thread

● microprocessor, processor or simply CPU, is a single chip
● communications between the different processors of a

multiprocessor system are very inefficient since they have to
be done through the system bus

● in order to improve this situation the HyperThreading
technology was invented

● duplicating some CPU internal components within the same
chip, such as registers or first level caches

● miniaturizing all processor components and encapsulating
them next to others in a single chip

● each of these encapsulated processors is called core
● communications between them by means of an internal bus

CPU vs Core vs Thread

CPU vs Core vs Thread

Parallel computing

● The parallel computing is when a number of processors
(cores) solve a problem in a cooperative way

● All supercomputers’ architectures depend on parallelism

Basic principles of parallelism

● Parallelization is the process of formulating a problem in a
way that lends itself to concurrent execution by several
“execution units”

● Ideally, the execution units are initially given some amount
of work to do which they execute in exactly the same
amount of time

● Using N units, a problem that takes a time T to be solved
sequentially, will now take only T/N.

● We call this a speedup of N.
● How well a task can be parallelized is usually quantified by

some scalability metric

Parallelization strategies

● Data parallelism: Many simulations in science could be
represented with a simplified picture of reality in which a
computational domain is represented as a grid of discrete
positions for the physical quantities under consideration.
The work is distributed across processors, and a part of the
grid is assign to each CPU. This is called domain
decomposition.

● Functional (or task) parallelism: Solving a complete
problem can be split into more or less disjoint subtasks.
The tasks can be worked on in parallel, using appropriate
amounts of resources so that load imbalance is kept under
control.

Data parallelism
● As an example consider a two-dimensional simulation code that

updates physical variables on a n×n grid
● Domain decomposition subdivides the computational domain

into N subdomains
● The computational effort should be equal for all domains to

avoid load imbalance
● It may be necessary to communicate data across domain

boundaries
● The communication cost grows linearly with the distance that

has to be bridged in order to calculate observables at a certain
point of the grid

Functional parallelism

● Spliting a complete problem into disjoint subtasks that can
be worked on in parallel

● For instance, assign some resources to communication
and others to computational work

Performance models for parallel scalability

● In a simple model, the overall problem size (“amount of
work”) shall be s + p = 1

● The 1-CPU (serial) runtime for this case:

● Solving the same problem on N CPUs:

● This is called strong scaling because the amount of work
stays constant no matter how many CPUs are used

● Here the goal of parallelization is minimization of time to
solution for a given problem

Performance models for parallel scalability

● For larger problem sizes, for which available memory is the
limiting factor, it is appropriate to scale the problem size with
some power of N so that the total amount of work is s + pNα

● The serial runtime for the scaled problem is defined as:

● The parallel runtime is:

● This approuch is called weak scaling

Scalability limitations

Scalability limitations

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

