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“High Performance Computing most generally
refers to the practice of aggregating computing
power in a way that delivers much higher
performance than one could get out of a typical
desktop computer or workstation in order to
solve large problems in science, engineering, or

business.”




 The commodity HPC cluster

* Dedicated supercomputer
* HPC cloud computing
* Grid computing



cluster

* Over the last ten years, the HPC cluster has disrupted the
entire supercomputing market. Built from standard off-the-shelf
servers and high speed interconnects, a typical HPC system
can deliver industry-leading, cost-effective performance.

* Atypical cluster can employ hundreds, thousands, and even
tens of thousands of servers all working together on a single
problem (this is the high tech equivalent of a “divide and
conguer” approach to solving large problems).

* Because of high performance and low cost, the commodity
cluster is by far the most popular form of HPC computing. Also
keep in mind the compatibility advantage — x86 commodity
servers are ubiquitous.



puter

* |In the past, the dedicated supercomputer was the only way to
throw a large number of compute cycles at a problem.

* Supercomputers are still produced today and often use
specialized non-commodity components.

* Depending on once needs, the supercomputer may be the best
solution although it doesn’t offer the commodity price
advantage.



B HRC cloud computing

* This method is relatively new and employs the Internet as a
basis for a cycles-as-a-service model of computing. The
compute cycles in question live in the cloud somewhere
allowing a user to request remote access to cycles on-demand.

 An HPC cloud provides dynamic and scalable resources (and
possibly virtualization) to the end-user as a service.

* Although clouds can be cost effective and allow HPC to be
purchased as an expense and not a capital asset, it also places
some layers between the user and hardware that may reduce

performance.
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I Grid Computing

e Grid is similar to cloud computing, but requires more control by
the end-user. Its main use is academic projects where local
HPC clusters are connected and shared on a national and
International level.

 Some computational grids span the globe while others are
located within a single organization.




puting

e Cloud computing is simply a method of storing and accessing
data or software over the Internet rather than a local hard drive.
“The Cloud” is tech jargon for a virtual, seamless connection.
The term comes as a result of flowcharts and presentations that
often visualize this virtual connection using a cloud.

e At its core, grid computing is a computer network in which each
computer’s resources are shared. Processing power, memaory,
and data storage are all community resources. Therefore
authorized users can tap into and leverage these resources for
specific tasks.




uting

* Cloud computing:

- Adventages: Disaster Recovery, Increased
Collaboration and Flexibility, Eco Friendly

- Disadventages: Internet Connectivity, Learning Curve
* Grid computing:
- Adventages: Cheaper Servers, More Efficient, Fail-safe

- Disadventages: May Still Require Large SMP, Requires
Fast Interconnect, Some Applications Require
Customization, Licensing



uting

* At face value, Cloud Computing and Grid Computing are very

similar, but often serve very specific needs, projects and use
cases.

* Cloud computing is great for flexibility, ease-of-use, and
security, while Grid Computing makes utilizing physical
hardware more economical when used in the right way.

e S0, Cloud Computing vs Grid Computing, which is better? The
answer really comes down to what you are trying to do and the
resources you have at your disposal.



Top 10 positions of the 56th TOP500 in November 2020[25]
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@ 100s-1000s of rack-mounted
computers

@ Networking

@ Storage




@ Access via the login nodes

@ Shared filesystem presents @!:l::l ~ Shared
data across all nodes _ﬂ Filesystem
@ Submit jobs scheduled to Login
run on compute nodes _

Compute




Components of HPC cluster

e Just 3 things!
 Headnode
e Cluster

* Filesystem
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pute Node

CPU .Each CPU has discrete processor cores
L111 thatyou see as separate CPUs when

[ using the cluster. On each node they are

_ allthe same, but between nodes they

T may be different.

RAM.Random Access Memory is where files
and programs are loaded to run. Make
sure you request enough for your job,
otherwise you might get errors.

N IC Network Interface Card. Connects the
node to other nodes, shared storage,

: n-[g and other networks. Most nodes also
use the NIC to connect to the internet.

Grapics Processing Unit. Some nodes
also have graphics processors. Though

GPU

®
H D D The Hard Disk Drive on each node stores

the operating system and some E ﬂ Q historically used for gaming and image
@ programs. It's also where /tmp is. Files —cr processing, they can also be used in
| onanode's HDD can only be seen by some parallel computing.

that node.
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d benchmarks

maximum operating speed - peak performance
floating-point operations per second — Flops/sec
measuring multiply and add operations execution time

operation like square root or trigonometric function too slow —
should be avoided

* low-level benchmarking: a program to test some specific
feature of the architecture

* application benchmarks




nchmarks

Listing 1.1: Basic code fragment for the vector triad benchmark, including performance
measurement.

double precision A(N),B(N),C(N),D(N),S,E,MFLOPS
5 = get_walltime()

do j=1,R
do i=1,N
A(i) = B(i) + C(i) = D(i) ! 3 loads, 1 store
enddo
call dummy(A,B,C,D) ! prevent loop interchange
enddo

E = get_walltime()
MFLOPS = R#N+#2.d0/((E-5)#1.d6) ! compute MFlop/sec rate
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Moore’s Law

The number of transistors on a chip roughly
doubles every two years, as their cost goes down

“In 1965, Gordon Moore sketched out
his prediction of the pace of

silicon technology. Decades later,
Moore's Law remains true,

driven largely by Intel’s unparalleled
silicon expertise.” - Intel press page.




Moore’s Law: The number of transistors on microchips doubles every two years [oNaiZuL

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. in Data
This advancement is important for other aspects of technological progress in computing - such as processing speed or the price of computers.
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ncepts

Advanced processors concepts have been developed to improve
application performance:

* Pipelined functional units

* Superscalar architecture

* Out-of-order execution

* Larger caches

* Advancement of instruction set design (CISC, RISC, EPIC)



1 2 3 4 5 M M+1 M+2 M+3 M+4
PETTRTETr PEETETETr ERTETETer rrraran T T T e e R e PR P PR T LT R TR IR 3
Cycle
Separate Bi1)| | B2} | |B(3 | | Bigd| | BUS) B (M) -
mant./exp. cil)| |ci2)| [c(3)| | cia)| [ cis) cin) = Wind-down |
B(l) | [ B(2) B(3)| | B(4) Bin-1) | B(N)
ci1)y| | c(2) ci3)| | cia) cie-1) [ C(N)
Add B(1) | | BI(2)| | B(3) Bin-2)| |Bim-13| [ BIN)
exponents ci1) ci2)| | ci3) ciw-2)| |ciw-1)| [ CIN)
A A A
Insert Wind-up A A A A
sign [ =l &1 wm-a)| | w33 | w-2| | w-np| | 2O

 a pipeline of depth (or latency) m, executing N independent,
subsequent operations takes N + m — 1 steps

e a general-purpose unit needs m-cycles to generate a single result




* the expected speedup: Tseq  mN

Ti.llpe_N+ﬂI—l 1

throughput N ‘
« throughput: ik .
Thipe 1+ 25

 the deeper the pipeline the larger the number of independent
operations must be to achieve reasonable throughput because
of the overhead incurred by wind-up and wind-down phases

* min N to get at least p results per cycle

1 m—1
P= T = Ne= { )P

l+1"-'¢ I_F




* Interleaving of loop iterations in order to meet latency
requirements is called software pipelining

do i=1,N
A(i) = 8 = A(1)
enddo

loop: load A(i)
mult A(i) = A(i) #* s
store A(i)
branch -> loop

loop: load A(i+6)
mult A(i+2) = A(i+2) #* s
store A(i)
branch -> loop
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ory

* Caches are low-capacity, high-speed memories

 Main memory is much slower but also much larger than cache

e Caches can only have a positive effect on performance Iif the
data access pattern of an application shows some locality of
reference
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leration #

use data

LD | use data

LD | use data

Figure 1.10: Timing diagram on the influence of cache misses and subsequent latency
penalties for a vector norm loop. The penalty occurs on each new miss.
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