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Samples returned from the asteroid Ryugu are
similar to Ivuna-type carbonaceous meteorites
Tetsuya Yokoyama† and Kazuhide Nagashima† et al.

INTRODUCTION: The Hayabusa2 spacecraft
made two landings on the asteroid (162173)
Ryugu in 2019, during which it collected sam-
ples of the surface material. Those samples
were delivered to Earth in December 2020. The
colors, shapes, andmorphologies of the returned
samples are consistent with those observed on
Ryugu by Hayabusa2, indicating that they are
representative of the asteroid. Laboratory anal-
ysis of the samples can determine the chemical
composition of Ryugu and provide information
on its formation and history.

RATIONALE: We used laboratory analysis to
inform the following questions: (i) What are
the elemental abundances of Ryugu? (ii) What
are the isotopic compositions of Ryugu? (iii)
Does Ryugu consist of primary materials pro-
duced in the disk fromwhich the Solar System
formed or of secondary materials produced
in the asteroid or on a parent asteroid? (iv)
When were Ryugu’s constituent materials

formed? (v) What, if any, relationship does
Ryugu have with meteorites?

RESULTS: We quantified the abundances of
66 elements in the Ryugu samples: H, Li, Be, C,
O,Na,Mg,Al, Si, P, S,Cl,K,Ca, Sc,Ti, V, Cr,Mn,Fe,
Co, Ni, Cu, Zn, Ga, Ge, As, Se, Rb, Sr, Y, Zr, Nb,Mo,
Ru,Rh,Pd,Ag,Cd, In, Sn,Te, Cs, Ba, La, Ce, Pr,Nd,
Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W,
Tl, Pb, Bi, Th, andU. There is a slight variation in
chemical compositions between samples from
the first and second touchdown sites, but the
variations could be due to heterogeneity among
the samples that were analyzed.
The Cr-Ti isotopes and abundance of volatile

elements are similar to those of carbonaceous
meteorites in the CI (Ivuna-like) chondrite group.
The Ryugu samples consist of the minerals
magnetite, breunnerite, dolomite, and pyrrho-
tite as grains embedded in a matrix composed
of serpentine and saponite. This mineral as-
semblage and the texture are also similar to

those of CI meteorites. Anhydrous silicates
are almost absent, which indicates extensive
liquid water–rock reactions (aqueous alter-
ation) in the material. We conclude that the
samples mainly consist of secondarymaterials
that were formed by aqueous alteration in a
parent body, from which Ryugu later formed.
The oxygen isotopes in the bulk Ryugu sam-

ples are also similar to those in CI chondrites.
Weusedoxygen isotope thermometry todetermine
the temperature atwhich thedolomite and mag-
netite precipitated from an aqueous solution,
which we found to be 37° ± 10°C. The 53Mn-53Cr
isotopes date the aqueous alteration at 5:2þ0:8

�0:7
million (statistical) or 5:2þ1:6

�2:1 million (system-
atic) years after the birth of the Solar System.
Phyllosilicate minerals are the main host of

water in the Ryugu samples. The amount of
structural water in Ryugu is similar to that in
CI chondrites, but interlayer water is largely
absent in Ryugu, which suggests a loss of
interlayer water to space. The abundance of
structural water and results from dehydration
experiments indicate that the Ryugu samples
remained below ~100°C from the time of aque-
ous alteration until the present. We ascribe the
removal of interlayer water to a combination of
impact heating, solar heating, solar wind irra-
diation, and long-term exposure to the ultrahigh
vacuum of space. The loss of interlayer water
from phyllosilicates could be responsible for
the comet-like activity of some carbonaceous
asteroids and the ejection of solid material
from the surface of asteroid Bennu.

CONCLUSION: The Ryugu samples are most
similar to CI chondrite meteorites but are
more chemically pristine. The chemical com-
position of the Ryugu samples is a closermatch
to the Sun’s photosphere than to the compo-
sition of any other natural samples studied in
laboratories. CI chondrites appear to have been
modified on Earth or during atmospheric en-
try. Such modification of CI chondrites could
have included the alteration of the structures of
organics and phyllosilicates, the adsorption of
terrestrial water, and the formation of sulfates
and ferrihydrites. Those issues do not affect
the Ryugu samples. Those modifications might
have changed the albedo, porosity, and density
of the CI chondrites, causing the observed dif-
ferences between CI meteorites, Hayabusa2
measurements of Ryugu’s surface, and the
Ryugu samples returned to Earth.▪
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DolomiteFe S Ca Breunnerite Pyrrhotite Magnetite Phyllosilicates

Representative petrography of a Ryugu sample, designated C0002-C1001. Colors indicate elemental
abundances determined from x-ray spectroscopy. Lines of iron, sulfur, and calcium are shown as red, green, and
blue (RGB) color channels in that order. Combinations of these elements are assigned to specific minerals, as
indicated in the legend. All visible minerals were formed by aqueous alteration on Ryugu’s parent body.
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Carbonaceous meteorites are thought to be fragments of C-type (carbonaceous) asteroids.
Samples of the C-type asteroid (162173) Ryugu were retrieved by the Hayabusa2 spacecraft. We
measured the mineralogy and bulk chemical and isotopic compositions of Ryugu samples. The
samples are mainly composed of materials similar to those of carbonaceous chondrite meteorites,
particularly the CI (Ivuna-type) group. The samples consist predominantly of minerals formed in aqueous
fluid on a parent planetesimal. The primary minerals were altered by fluids at a temperature of
37° ± 10°C, about 5:2þ0:8

�0:7 million (statistical) or 5:2þ1:6
�2:1 million (systematic) years after the

formation of the first solids in the Solar System. After aqueous alteration, the Ryugu samples were
likely never heated above ~100°C. The samples have a chemical composition that more closely
resembles that of the Sun’s photosphere than other natural samples do.

M
eteorites are fragments of asteroids,
but identifications of the specific
parent asteroid are rarely available.
Samples of asteroid (25143) Itokawa
thatwere returned by the Hayabusa

mission showed that S-type (stony, in a re-
mote sensing classification) asteroids are com-
posed of materials that are consistent with
those of ordinary chondrite meteorites (1, 2).
The Hayabusa2 (3) spacecraft was launched
on 2014 December 3 to collect samples of the
near-Earth asteroid (162173) Ryugu, which is
Cb-type [a subclass of C-type (carbonaceous)

asteroid in the remote sensing classifica-
tion]. A mission goal was to determine the
relationship between C-type asteroids and
the carbonaceous chondrite meteorites. Ob-
servations of Ryugu from Hayabusa2 after
rendezvous showed that (i) Ryugu is darker
than every meteorite group (4, 5), (ii) Ryugu
contains ubiquitous phyllosilicate minerals
(4, 6), (iii) Ryugu’s surface experienced heat-
ing above 300°C (6), and (iv) Ryugu materials
are probably more porous than carbonaceous
chondrites (7, 8). These results indicated that
carbonaceous chondrites are plausible analogs

of Ryugu but do not completely match the
spacecraft observations. Laboratory analysis of
the samples of Ryugu returned by Hayabusa2
is required to explain these results.
During 2019, the Hayabusa2 spacecraft

made two landings on Ryugu to collect mate-
rials (9); it then delivered the collected sam-
ples to Earth on 2020 December 6. The
returned samples are rock fragments that
range in size up to ~10 mm in length, with a
total mass of 5.4 g. Their colors, shapes, and
morphologies are consistent with those
observed on the surface by Hayabusa2, indi-
cating that the returned samples are repre-
sentative of Ryugu’s surface (10, 11). The
samples were recovered in a nondestructive
manner and examined under contamination-
controlled conditions at the Japan Aerospace
Exploration Agency (JAXA) Extraterrestrial
Sample Curation Center before delivery to
initial analysis teams in June 2021 (10). Our
team was allocated ~125 mg of samples,
which contained both powder and particles
from the first and the second touchdown sites
(12). We used ~95 mg for this paper.

Petrology and mineralogy

We prepared polished sections of particle
samples that were retrieved from the first
touchdown site (particle designation A0058)
and from the second touchdown site (C0002)
(12). The petrography, mineralogy, and chem-
ical composition of the minerals were de-
termined using electron microscopy (12).
The Ryugu samples are mixtures of mecha-

nical fragments—composed of fine-grained
materials of phyllosilicate minerals, pre-
dominantly serpentine and saponite—and
coarser grains dominated by carbonates,
magnetite, and sulfides (Fig. 1, A, B, and D).
No Ca-Al–rich inclusions (CAIs) or chon-
drules, which are characteristic constituents
of most chondrite meteorites, were evident
in the allocated samples. The serpentine-to-
saponite molar ratio is about 3:2 on the basis
of the chemical compositions of the phyllo-
silicate minerals (Fig. 1C). The coarser-grained
minerals in the polished sections are dolomite
[CaMg(CO3)2], breunnerite [(Mg, Fe, Mn)CO3],
pyrrhotite (Fe1−xS, where x = 0 to 0.17), and
magnetite (Fe3O4) (Fig. 1B). These are distrib-
uted throughout the sections (Fig. 1D) and in
small veins (Fig. 1A). Calcite (CaCO3), pent-
landite [(Fe,Ni)9S8], cubanite (CuFe2S3), ilmen-
ite (FeTiO3), apatite [(Ca5(PO4)3(OH,F,Cl)], and
Mg-Na-phosphate are present as accessory
minerals. Anhydrous silicates, such as olivine
and pyroxene, are common in chondrites but
are very rare in our Ryugu samples, occurring
only as discrete grains smaller than ~10 mm
across. No metal grains were identified. Over-
all, the petrology and mineralogy of the
Ryugu samples most closely resemble those
of the CI (Ivuna-like) group of chondrite
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meteorites, which have experienced extensive
aqueous alteration (13). However, sulfates and
ferrihydrite, which are commonly observed
in CI chondrites, were not identified in the
Ryugu samples that we studied.

Bulk chemical and isotopic compositions

Bulk chemical compositions were determined
using ~25 mg of small-grain aggregate samples
from each site: particles A0106 and A0107 from
the first touchdown site and C0108 from the
second touchdown site (12). Elemental abun-
dances were determined using x-ray fluores-
cence (XRF) analysis and inductively coupled
plasma mass spectrometry (ICP-MS). After
chemical analysis, the same samples, ICP-MS
analysis, and thermal ionization mass spec-
trometry (TIMS) were used to determine iso-
topic compositions of titanium and chromium.
We found no systematic differences in che-

mical composition between the samples from
the first and second touchdown sites (Fig. 2).
We did find variations in bulk composition
within each of those samples, which are most
likely due to heterogeneity at small scales (12).
The masses of the samples that were analyzed
were less than 30 mg; coarser-grained water-
precipitated minerals might not be uniformly
distributed at that scale (a cross section of
an ~10-mg block is shown in Fig. 1D). Spatial
heterogeneity in the mineral distributions is
observed for carbonates (dolomite) and sul-
fides (pyrrhotite), which both precipitate from
aqueous solution and probably occurred dur-

ing aqueous alteration on Ryugu’s parent
planetesimal (Fig. 1). We found different con-
centrations of rare earth elements (REEs)
between samples from the first touchdown
site and the second touchdown site (12), with
both being higher than the REE abundance
in CI chondrites (Fig. 2). These variable en-
richments could be due to depletion of H2O,
relative to CI chondrites (see next paragraph
and the sectionH2O and CO2 sources), and the
heterogeneous distribution of REE-rich Ca-
phosphate grains (14, 15). Heterogeneity at simi-
lar scales has been observed in CI chondrites
(16, 17) and in the ungrouped carbonaceous
chondrite Tagish Lake (18).
We did not observe systematic depletions

of elemental abundances, relative to CI chon-
drites, as a function of the 50% condensation
temperatures of each element (their volatility)
(Fig. 2). This is unlike other groups of carbon-
aceous chondrites, which show various degrees
of depletion with volatility (19). The high
abundance of moderately and highly vola-
tile elements in the Ryugu samples indi-
cates that Ryugu is composed of materials
related to the CI chondrite group. However,
the elemental abundances of hydrogen and
oxygen are highly depleted in the Ryugu sam-
ples compared with CI chondrites, which we
interpret as being due to the removal of H2O.
Previous studies have found a dichotomy in

the isotopic compositions of titanium and
chromium between noncarbonaceous (NC)–
like and carbonaceous (CC)–like isotope ratios

(20–23). The bulk titanium and chromium
isotopic ratios we measured for the Ryugu
samples are similar to the CB (Bencubbin-
like) and CI chondrite values (12), which are
both CC (Fig. 3). CB chondrites are metal rich
(24), unlike the Ryugu samples, and so are
unlikely to be directly related.

Oxygen isotopic composition

Bulk oxygen isotopic compositions of the
Ryugu samples from the first (~4 mg of agg-
regate sample A0107) and the second (~1 mg
of fragment from particle sample C0002)
touchdown sites were determined using
laser-fluorination isotope-ratio mass spec-
trometry (LF-IRMS) (12). Oxygen isotopic
compositions of secondary minerals from
the first touchdown site were determined by
secondary ion mass spectrometry (SIMS)
using the polished section used for petrol-
ogy and mineralogy (12).
Oxygen isotopes measured in the bulk

Ryugu samples overlap with those of the
bulk samples of the Orgueil CI chondrite
(Fig. 4). We interpret the variation in d18O
(defined as the permille deviation from the
18O/16O ratio of standard mean ocean water)
as being due to the heterogeneous distribu-
tions of the constituent minerals, which may
have very different isotopic compositions, in-
cluding phyllosilicates, carbonates, and mag-
netite. Two ~2-mg Ryugu samples from the
first touchdown site have consistent D17O
values (defined as the permille deviation from
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the terrestrial fractionation line) (12), with an
average D17O of 0.68 ± 0.05 per mil (‰) (un-
certainty of 2 SD). These are higher D17O
values than those of the three samples of
Orgueil that were analyzed in the same lab-
oratory session, which have D17O values of 0.42
to 0.53‰. Another Ryugu sample from the

second touchdown site that was analyzed in a
different laboratory has a lower D17O value of
0.44 ± 0.05‰, which is consistent with values
for Orgueil that were analyzed with the same
equipment (D17O = 0.39 to 0.57‰). We there-
fore ascribe the differences between the Ryugu
samples as being due to heterogeneity on small

scales or different sampling sites on Ryugu and
not as systematic differences between the lab-
oratories. The average D17O value of the three
Ryugu samples, 0.61 ± 0.28‰ (2 SD), is slightly
higher than the average for the Orgueil sam-
ples of 0.48 ± 0.15‰ (2 SD, five samples); a
single measurement of the CI chondrite Ivuna,
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Fig. 1. Petrography of the Ryugu sample. (A) Backscattered electron (BSE)
image of Ryugu sample A0058-C1001 (12). The black space in the figure is a pore.
(B) Combined elemental map of the same sample, with characteristic x-rays
of Ca Ka, Fe Ka, and S Ka lines assigned to red, green, and blue (RGB) color
channels. Carbonate (dolomite), sulfide (pyrrhotite), and iron oxide (magnetite)
minerals are embedded in a matrix of phyllosilicates and, in some cases, precipitated
in small veins. The sulfide texture is similar to that in the ungrouped chondrite
Flensburg (52). (C) Ternary diagram between Fe, Mg, and Si with Al (Si+Al) showing
bulk chemical compositions of phyllosilicates in A0058-C1001. Black lines are

compositions of solid solution for serpentine and saponite. Each open red circle
shows the bulk chemical composition of phyllosilicates that were measured in
various locations of the areas shown in (A) and (B), with each location being a
5- to 10-mm square. We chose each size to exclude minerals other than
phyllosilicates in the area. The bulk compositions differ from location to location, with
a distribution that indicates that the phyllosilicates consist of serpentine and
saponite with variable Fe/Mg ratios. Uncertainties on each measurement are smaller
than the symbol size. (D) BSE image of Ryugu sample C0002-C1001 showing
brecciated matrix. The texture is similar to that of CI chondrites (53).
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which was 0.41 ± 0.05‰; and prior measure-
ments of CI chondrites [0.39 to 0.47‰ (25)].
The difference may either reflect original het-
erogeneity between small samples or result
from contamination of the meteorite samples
by terrestrial water that was incorporated by
the phyllosilicates, sulfates, iron oxides, and
iron hydroxides. The discrepancy in the D17O
values between Ryugu and Orgueil (~0.15‰
offset) persists despite heating both groups of
samples to ~116°C for 2 to 4 hours to remove
adsorbed water, which indicates that any ter-
restrial contamination in the Orgueil samples is
part of the structure of the minerals and not
adsorbed to surfaces.
Dolomite grains in the Ryugu samples are

enriched in 18O, relative to the whole-rock
values, but have D17O values consistent with
those of thewhole rock (Fig. 4). The constituent

minerals are generally consistent with mass-
dependent fractionation. The oxygen isotope
ratios of dolomite in Ryugu overlap with those
of dolomite from Ivuna (Fig. 4). Ryugu mag-
netite is depleted in 18O, relative to the whole-
rock value, with all but one measurement
being consistent with mass fractionation.
The oxygen isotope ratios of Ryugu magnet-
ite grains are consistent with those of Ivuna
(26, 27). The distributions of 18O/16O ratios
and the consistency of D17O values indicate
isotopic equilibrium during the growth of the
minerals that were produced during aqueous
alteration.
In one polished section, dolomite andmag-

netite grains are located within ~100 mm of
each other (fig. S1). The dolomite D17O
value is –0.7 ± 0.9‰ (2 SD) (12), whereas
the magnetite grains have consistent D17O

values, with a mean of –0.1 ± 0.4‰ (2 SE).
Because the D17O values of dolomite and
magnetite grains are within their mutual
uncertainties, they might have precipitated
from the same fluid. Assuming isotopic equi-
librium, we used oxygen isotope thermo-
metry (28–31) to estimate the temperature
at which the dolomite-magnetite pair pre-
cipitated. The d18O values of the dolomite
and magnetite are 29.9 ± 0.9‰ (2 SD) and
–3.0 ± 1.1‰ (2 SD), respectively. The difference
in d18O values between the dolomite and
magnetite is 32.9 ± 1.4‰, which corresponds
to an equilibration temperature of 37° ± 10°C
(fig. S2). The temperature is in the range (10°
to 150°C) of previous estimates for aqueous
alteration of CI chondrites (25, 32–34).We also
estimated (12) the oxygen isotope ratios of the
water and serpentine that would have been in
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equilibrium with those of the magnetite and
dolomite grains and found (d18O, d17O) =
(1.0 ± 1.0‰, 0.3 ± 1.0‰) for the water and
(18.6 ± 2.0‰, 9.2 ± 1.0‰) for the serpentine

(Fig. 4 and fig. S2). The value for serpentine
is consistent with that of the whole rock,
which is what we expected because of the
high abundance of serpentine in the sam-

ples. These measurements indicate that oxy-
gen isotopes were in equilibrium, or close to
it, during aqueous alteration of the Ryugu
samples.
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Fig. 3. Ti and Cr isotopes for Ryugu and other Solar System materials. Data
are shown in epsilon notation, as defined by eqs. S1 and S2. The Ryugu
samples (filled blue circles) are most similar to the CB and CI chondrites,
in the CC meteorites region. Abbreviations are as follows: CC, carbonaceous
(dark blue symbols); NC, noncarbonaceous (red symbols); CI, CM, CO, CV, CK,
CR, and CB, named groups of carbonaceous chondrite meteorites; OC,
ordinary chondrite meteorites; and EC, enstatite chondrite meteorites
(all empty circles). The CC achondrites and NC achondrites (filled diamonds) are
differentiated stony meteorites that have Ti and Cr isotopic compositions
similar to those of CC and NC meteorites, respectively. Values for Earth, the
Moon, and Mars are shown for comparison (empty green squares). Error bars are
2 SD of the mean. Data are from (21, 54, 55), except Ryugu (this work).
Numeric values are provided in data S3.
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(A) and (B), the error bars are 2 SD. Numeric values are provided in data S4.
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53Mn-53Cr dating
The precipitation of dolomite and magnetite
during aqueous alteration was dated using the
53Mn-53Cr system (12), which is based on the
decay of the short-lived radionuclide 53Mn to
53Cr (half-life of 3.7 million years). The 53Mn-
53Cr systems for dolomite in the Ryugu and
Ivuna samples (Fig. 5) were measured from
the polished section used for petrology and
mineralogy using SIMS (12).
The slopes of linear models fitted to the data

indicate initial 53Mn/55Mn ratios of (2.55 ±
0.35) × 10−6 (2 SD) for Ryugu and (3.14 ± 0.28) ×
10−6 (2 SD) for Ivuna (12). Both initial values
are consistent with those of CI dolomites that
were obtained in previous studies (35, 36).
We compared the initial 53Mn/55Mn ratio
to that of the D’Orbigny meteorite (37), an
angrite that has been precisely dated and can
be related to the ages of the oldest CAIs from
CV (Vigarano-type) chondrites (38–40). We
found that dolomite precipitation in theRyugu
sample occurred at 5:2þ0:8

�0:7 million years after
the oldest CAI formation, which is conven-
tionally used to represent the formation of the
Solar System. However, there is additional
systematic uncertainty in this dolomite pre-
cipitation date because the initial Solar System
ratio of 53Mn/55Mn is not precisely constrained.
If we adopt different initial 53Mn/55Mn ratios
than those found for D’Orbigny, the dolomite
precipitation date changes to 4.8 million years
[using the value in (41)] or 6.8 million years
[for the value in (42)] after CAI formation.
There may be additional systematic uncer-
tainty in the 53Mn-53Cr age due to inherent
analytical limitations of the measurement

technique (12). We conclude that the Ryugu
precipitation date is in the range of 3.1 million
to 6.8 million years after CAI formation.

H2O and CO2 sources

Gas-release curves were measured for Ryugu
samples from the first touchdown site (parti-
cle samples of A0040 and A0094) and Ivuna.
Gas release was measured by increasing heat-
ing temperatures using thermogravimetric
analysis coupled with mass spectrometry
(TG-MS) and combination analyses of pyro-
lysis and combustion (EMIA-Step) (12). The
mass decrease of the samples during heat-
ing (mass loss) was measured simultaneously.
The mass loss and differential mass loss

[derivative thermogravimetric (DTG)] curves
(12) for our Ryugu and Ivuna samples are
shown in Fig. 6 [see also (12)]. The results for
Ivuna are similar to those reported in pre-
vious studies (43). For Ryugu, we found a
total mass loss of 15.38 ± 0.50 wt %, which is
~30% smaller than that of Ivuna (data S6).
The species responsible for the mass loss are
mainly H2O and CO2 for both Ivuna and Ryugu
(Fig. 6). SO2 might also contribute substantially,
but we were unable to quantify it because of a
lack of an appropriate standard (12).
The total weight fractions of H2O and CO2

gases released from the Ryugu sample that
weremeasured usingTG-MS are larger (20.78 ±
1.40 wt %) than the total mass loss (15.38 ±
0.50 wt %) that wasmeasured using TG alone
(12). We interpret this as indicating that
carbonates were not the only sources of CO2

during the TG-MS measurement, with orga-
nic carbon being oxidized to CO2 by residual

O2 in the He gas flow used for the experiment,
which produced a spurious excess of CO2 in
the mass spectrometry. Because decom-
position of carbonates occurs within a small
temperature range (43), we assigned the sharp
CO2 peaks at 600° to 800°C (Fig. 6) to carbon-
ates. We observed two carbonate peaks for
the Ryugu samples, which, according to the
petrographic results above, contain three types
of carbonate (dolomite, breunnerite, and cal-
cite).Wewere unable to attribute specific peaks
to specific carbonates. The double peaks might
arise from sealed pore spaces because we ana-
lyzed intact chips and not powders.
The remaining broad continuum in Fig. 6

is probably due to the oxidation of organic
carbon by the indigenous oxygen that is con-
tained in organics in the sample or by residual
O2 in the He gas flow. Therefore, we assigned
the CO2 peak to carbonates and the remain-
der to organics (Fig. 6). The organic carbon
content values are lower limits, because TG-
MS leaves some organic carbon in the sample.
The organic carbon and total carbon con-
centrations that we found using TG-MS were
lower than those measured using EMIA-Step
(12) (data S6). We estimate that 74 ± 3% of
Ryugu organic carbon was released in TG-
MS, as the broad organic carbon continuum,
and 93 ± 4% for Ivuna. The profiles of the
broad organic carbon continuum are differ-
ent for both samples, which indicates differ-
ing organic components in Ryugu and Ivuna.
Many peaks are apparent in the H2O re-

lease curves (Fig. 6). We identified adsorbed
H2O from sulfates released at ~250°C and a
larger amount of H2O from phyllosilicates
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at ~600°C. The phyllosilicates consist of ser-
pentine and saponite (Fig. 1C). Serpentine
contains structural OH sites in the crystal
structure, whereas saponite contains inter-
layer H2O in addition to structural OH sites.
The petrologic andmineralogic observations
suggest that the sulfate contribution is neg-
ligible for Ryugu but not for Ivuna. The SO2

and H2O peak releases coincide in Ivuna (at
both 250° and 450°C) but not in Ryugu. We
conclude that phyllosilicates are the domi-
nant source of the H2O that is released from
the Ryugu sample.
Dehydration of the interlayer H2O of sapo-

nite is complete at 170°C (peaking at 90°C)
for Ryugu and complete at 350°C (peaking at
100°C) for Ivuna. Dehydroxylation of struc-

tural OH in saponite and serpentine occurs
at 300° to 800°C for Ryugu and at 350° to
800°C for Ivuna. The structural OH is domi-
nant (6.54 ± 0.32 wt % H2O) in the Ryugu
sample, with smaller amounts of interlayer
H2O (0.30 ± 0.01 wt % H2O). Both forms of
H2O are present at similar levels in Ivuna
(data S6).

Organic-inorganic fractions for hydrogen
and carbon

We performed an EMIA-Step analysis of the
Ryugu and Ivuna samples (12). For Ivuna,
the results showed that the total carbon
concentration is 3.31 ± 0.33 wt % (12), of
which 90% is organic carbon (Fig. 7 and
data S6). The total hydrogen in Ivuna is 1.59 ±

0.08 wt %, of which 89% is inorganic hy-
drogen. All these values are consistent with
previous measurements of the same mete-
orite (44). The total H2O for Ivuna is 12.73 ±
0.63 wt %, distributed as 6.58 ± 0.32 wt %
interlayer H2O and 6.15 ± 0.30 wt % structural
OH or H2O in the phyllosilicate minerals.
The Ryugu samples contain less H2O than

Ivuna. The total H2O is 6.84 ± 0.34 wt %,
including 0.30 ± 0.01 wt % interlayer H2O
and 6.54 ± 0.32 wt % structural OH or H2O
(data S6). The structural value is similar to
that of Ivuna, but the interlayer water value
is substantially lower. The total hydrogen
is 0.94 ± 0.05 wt % for Ryugu, and the in-
organic hydrogen (i.e., H2O) makes up 81%
of the total hydrogen. The amount of organic
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carbon in Ryugu is 3.08 ± 0.30 wt %, which
is indistinguishable from that in Ivuna (2.97
± 0.29 wt %) (Fig. 7 and data S6). This im-
plies that the inorganic matter/organic mat-
ter ratio is similar in the Ryugu and Ivuna
samples that were studied, excluding a pre-
vious proposal that Ryugu’s low albedo is
due to Ryugu having higher organic car-
bon contents than CI chondrites (45). How-
ever, the total carbon is higher in Ryugu (4.63
± 0.23 wt %) than in Ivuna, owing to the high-
er abundances of carbonates in the Ryugu
samples.

Formation history of Ryugu

Ryugu is thought to have formed through the
reaccumulation of material ejected from a
parent body by an impact (5). The aqueous
alteration of the samples must have occurred
on the parent body because aqueous fluid is
not stable in the current Ryugu asteroid. The
CI-like elemental abundances of Ryugu sug-
gest that the parent body accreted all elements
with 50% condensation temperatures higher
than 500 K that were present at the form-
ation of the Solar System, along with some
ice-forming elements (Fig. 2). Ryugu’s parent
body was probably closely related to the
parent body (or bodies) of the CI chondrites.
We assume that the accreted material was
mainly anhydrous dust and ice. Physical
modeling of the thermal evolution of a water
ice–bearing CI-like planetesimal (35), com-
pared with the results of our oxygen-isotope
thermometry, suggests that the Ryugu parent

body accreted 2 million to 4 million years
after the formation of the Solar System (as
defined by the ages of the oldest CAIs).
About 1 million to 2 million years later,

roughly 5 million years after the formation
of the Solar System (Fig. 5), the material
that would later be incorporated into Ryugu
experienced aqueous alteration. This caused
the precipitation of dolomite and magnetite
from an aqueous solution at about 37°C. The
aqueous alteration of the primary minerals
was very extensive. The saponite produced by
this fluid-assisted alteration in the parent
body must have contained large amounts of
interlayer water (~7 wt %) in its crystal
structure when it formed under saturated
water activity, as observed in Ivuna (data
S6). The low abundance of interlayer water
in the Ryugu samples (0.3 wt %) indicates
that much of this water later escaped to
space, most likely after disruption of the
parent body and formation of the rubble-
pile asteroid Ryugu. We cannot definitively
identify the dehydration mechanism but
suggest that it may have included some com-
bination of impact heating, solar heating,
space weathering, and long-term exposure
of the asteroid surface to the ultrahigh vac-
uum of space.
We estimate the dehydration temperature

as 170°C, the temperature at which interlayer
water that is now in the Ryugu samples com-
pletely dehydrates. The dehydration speed
of the interlayer water in our experiments is
20% of the total interlayer water per minute,

around the peak temperature of 90°C (data
S7) (12). The ambient space pressure in Ryugu,
which is much lower than the experimental
pressure of 105 Pa, would accelerate this de-
hydration speed. Such high dehydration rates
are sufficient to completely dehydrate the
interlayer water for any plausible geological
heating events that occurred in Ryugu. Be-
cause a small peak of interlayer water is still
emitted at 90°C in our experiments, it is pos-
sible that, since their aqueous alteration, the
Ryugu samples have never been heated above
~100°C (Fig. 6). These temperatures rule out
the previously proposed thermal history of
Ryugu (6), which was based on laboratory
heating experiments of carbonaceous chon-
drites. The temperatures that we estimate
are consist with Hayabusa2 observations of
the surface temperature at the present orbit
of Ryugu (7).
Some asteroids show comet-like activity,

the origin of which is uncertain and could
involve several mechanisms (46). This acti-
vity can be subtle, as in the B-type (bluish and
spectroscopically similar to C-type) asteroid
Bennu, where small ejections of dust particles
and rocks have been observed (47). Ther-
mal fracturing, phyllosilicate dehydration,
and micrometeoroid impacts have been pro-
posed (47) as explanations for the ejection of
solid particles from Bennu. Our finding that
saponite in Ryugu is partially dehydrated
supports the possibility that volatile release
from phyllosilicates can induce comet-like
activity at the surface of inner Solar System
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carbonaceous asteroids. Possible mechanisms
to lift dust and rocks from asteroid surfaces
include (i) anisotropic release of water mole-
cules from phyllosilicate-rich dust particles,
which imparts a net momentum to those
particles, or (ii) buildup of vapor pressure
in sealed pore spaces, which leads to pore
bursting that propels dust particles away
from the surface. Phyllosilicate dehydration
could also play a role in the production of
interplanetary dust particles and micro-
meteorites. The thermal release pattern of
Ivuna (Fig. 6) shows that interlayer water is
lost from saponite at a temperature between
~0° and 200°C. The observed maximum
current surface temperatures of ~100°C for
Ryugu (7) and ~170°C for Bennu (48) would
therefore be sufficient for such devolatili-
zation to take place. If so, the devolatilization
must be largely complete for surface particles
on Ryugu because no particle ejections were
observed by the Hayabusa2 spacecraft.

Implications for CI chondrites
and cosmochemistry

The elemental compositions of CI chondrites
more closely match measurements of the
solar photosphere than those of other types
of meteorites (49); CIs differ from the Sun in
the abundances of the noble gases, hydrogen,
carbon, nitrogen, oxygen, and lithium. CI
chondrites experienced pervasive aqueous
alteration during water-rock interactions in
the early Solar System. Fewer than a dozen CI
chondrites are known, and they have all been
on Earth for decades to centuries (the most
recent fall was in 1965). It is therefore un-
known how much handling and exposure to
atmospheric moisture has modified their
mineralogies and elemental compositions.
Unlike CI chondrites, the Ryugu samples are
nearly free of sulfates, ferrihydrite, and inter-
layer water. This could be due to CI chon-
drites either having originated on parent
asteroids with higher water contents than
Ryugu or having been contaminated by ter-
restrial moisture during their residence on
Earth (50, 51). The lower abundance of an-
hydrous silicates, and the small but mea-
surable offset in D17O between Ryugu and
the Orgueil CI chondrite (Fig. 4), supports
the terrestrial contamination explanation. The
slightly higher D17O values of Orgueil in this
study compared with those in earlier studies
could be explained if O-isotope exchange
in the structural OH water of CI chondrites
occurred under room-temperature conditions.
The gas emission patterns measured in the
TG-MS and EMIA-Step analyses of Ryugu
differ from those of the Ivuna CI chondrite
(Figs. 6 and 7). This suggests that the struc-
tures of the organic matter differ between
Ryugu samples and Ivuna, possibly because of
modification during their residence on Earth.

We conclude that the Ryugu samples are
more chemically pristine than other Solar
System materials that have been analyzed
in laboratories, including CI meteorites. The
materials observed in CI chondritesmay have
been modified on Earth and thus no longer
reflect their states in space. Possible causes
are phyllosilicate hydration, organic matter
transformation and contamination, adsorp-
tion or reaction of atmospheric components,
and oxidation. These modifications might
have changed the albedo, porosity, and density
of the CI chondrites, which could explain the
differences between CIs and the observations
of Ryugu by Hayabusa2 (5, 7) and between CIs
and the Ryugu samples returned to Earth (10).
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