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Abstract

The thermal inertia of an asteroid is an indicator of the thermophysical properties of the regolith and is determined
by the size of grains on the surface. Previous thermophysical modeling studies of asteroids have identified or
suggested that object size, rotation period, and heliocentric distance (a proxy for temperature) are important factors
that separately influence thermal inertia. In this work we present new thermal inertia values for 239 asteroids and
model all three factors in a multivariate model of thermal inertia. Using multiepoch infrared data of this large set of
objects observed by WISE, we derive the size, albedo, thermal inertia, surface roughness, and sense of spin using a
thermophysical modeling approach that does not require a priori knowledge of an object’s shape or spin axis
direction. Our thermal inertia results are consistent with previous values from the literature for similarly sized
asteroids, and we identify an excess of retrograde rotators among main-belt asteroids <8 km. We then combine our
results with thermal inertias of 220 objects from the literature to construct a multivariate model and quantify the
dependency on asteroid diameter, rotation period, and surface temperature. This multivariate model, which
accounts for codependencies between the three independent variables, identifies asteroid diameter and surface
temperature as strong controls on thermal inertia.

Unified Astronomy Thesaurus concepts: Asteroid surfaces (2209); Asteroids (72); Infrared astronomy (786);
Infrared photometry (792)

Supporting material: machine-readable tables

1. Introduction

The thermophysical characterization of regolith—the uncon-
solidated, heterogeneous, rocky material covering the surface
of other planetary bodies—is an important part of under-
standing the processes and evolution of airless bodies of the
solar system. By comparing thermal observations to thermo-
physical models, the regoliths of asteroids can be characterized
by their thermal inertia (Γ). Thermal inertia is defined as

rG = k cs , where k is the effective thermal conductivity of the
regolith, ρ is the bulk density, and cs is the bulk specific heat
capacity. Thermophysical models (TPMs) are often used to
derive the thermal inertia of a body by comparing the observed
fluxes to those estimated from the model.

The largest asteroids (ranging from ∼500 to 1000 km) in the
solar system—i.e., (1) Ceres, (2) Pallas, and (4) Vesta—exhibit
global5 thermal inertias (Mueller & Lagerros 1998; Capria et al.
2014; Alí-Lagoa et al. 2020; Rognini et al. 2020) that are
comparable to that of the Moon (≈50 J m−2 K−1 s−1/2;
Wesselink 1948; Cremers 1975; Bandfield et al. 2011; Hayne
et al. 2017). On the other hand, smaller asteroids such as (433)
Eros, (162173) Ryugu, (101955) Bennu, and (25143) Itokawa
have approximate, estimated thermal inertias of, respectively

150, 225, 350, and 700 J m−2 K−1 s−1/2 (Mueller 2007;
Dellagiustina et al. 2019; Shimaki et al. 2020). The observed
correlation among asteroids of thermal inertia with size (Delbo’
et al. 2015; Hanuš et al. 2018; Rozitis et al. 2018) suggests that
only larger asteroids harbor a fine-grained regolith, whereas
smaller asteroid regoliths comprise coarse sand-sized particles
and/or a higher fraction of blocky material. This general trend
suggests that asteroid size is a large factor in determining the
state of asteroid regolith.
In addition to asteroid size, the rotation period has been

suggested as a factor that controls asteroid thermal inertia.
Harris & Drube (2016) used a thermal inertia estimator based
on the near-Earth Asteroid Thermal Model (NEATM; Harris
1998) and found a positive correlation between rotation period,
Prot, and thermal inertia. This correlation was attributed to the
deeper penetration of the thermal wave into subsurface material
that was higher in thermal conductivity and/or bulk density
(caused by smaller porosities). The thermal wave can be
expressed in terms of the thermal skin depth, ls, which is the
length scale over which the diurnal temperature variation
changes by a factor of e≈ 2.71828: pr=l kP c2s srot . On the
other hand, Marciniak et al. (2019) used a TPM to derive
thermal inertias of slow rotators and found no correlation
between the two variables.
For airless bodies, the effective thermal conductivity

comprises a solid and radiative component that corresponds
to different heat transport mechanisms in a regolith (e.g.,
Piqueux & Christensen 2009). If radiation is the dominant form
of heat propagation, then thermal inertia is expected to vary as
T3/2 (Delbo’ et al. 2015) because the radiative conductivity is
proportional to T3 (Vasavada et al. 1999). Rozitis et al. (2018)
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characterized the thermal inertia variation with heliocentric
distance (as a proxy for temperature) for three individual
asteroids and found a wide range of scaling dependencies for
each. In particular, they found that the thermal inertia of two of
the studied asteroids had stronger dependencies on heliocentric
distance than the T3/2 scaling law. On the other hand, the
thermal inertia of Bennu as measured by the OSIRIS-REx
spacecraft showed no evidence of temperature dependence
(Rozitis et al. 2020).

Generally speaking, the temperature distribution of a surface
is influenced by thermal inertia. All other factors kept constant,
higher thermal inertia surfaces have a smaller difference in
sunlit and nighttime temperature, while low thermal inertia
surfaces exhibit greater diurnal temperature differences. As
demonstrated in MacLennan & Emery (2019), thermal
emission observations taken at pre- and post-opposition
(multiepoch) are sensitive to differences in the temperature
distribution and thus can be used to estimate the thermal inertia.
This technique is effective at estimating the thermal inertia
when no shape or spin axis information about an asteroid is
known a priori.

The sense of spin (i.e., retrograde or prograde) for an
asteroid can also be estimated using multiepoch observations
(Mueller 2007; MacLennan & Emery 2019). Because there
exists a time lag between the period of maximum heating at
local noon and when the maximum surface temperature is
reached, a morning–afternoon dichotomy is present on surfaces
with a nonzero thermal inertia. Thus, the morning and
afternoon sides will correspond, respectively, or inversely, to
pre- and post-opposition viewing aspects, depending on the
object’s sense of rotation.

In this work we use multiepoch observations and the
methods of MacLennan & Emery (2019) to derive thermal
inertia and size estimated for 239 asteroids. In some cases, we
constrain the roughness and the object’s sense of spin.
Comparing our results to the benchmark study of MacLennan
& Emery (2019) and other works in the literature, we assess the
ability of this technique to estimate these TPM parameters. We
then incorporate diameter, rotation period, and temperature into
a unifying multifactor thermal inertia model that simulta-
neously accounts for these variables. In a follow-up work, we
produce grain size estimates from the thermal inertia values
presented here and investigate compositional differences in
regolith properties.

2. Observations and Thermophysical Modeling

Data from the Wide-field Infrared Survey Explorer (WISE) are
used for model fitting. Absolute magnitude (HV) and slope
parameter (GV) from Oszkiewicz et al. (2011), and Prot from the
Asteroid Lightcurve Database (ALCDB; Warner et al. 2009) are
used as TPM input values for each object (Table 1) along with
mean and peak-to-trough fluxes calculated from sparse light-curve
data. The thermophysical modeling approach presented in
MacLennan & Emery (2019) is used, as briefly summarized
below, and we thus select objects that were observed by WISE at
pre- and post-opposition. In MacLennan & Emery (2019) we
extracted and used the mean and peak-to-trough flux quantities
from thermal light curves via simple geometric averaging and
subtracting the maximum and minimum values, respectively.
Although those simplistic calculations are useful for dense light-
curve data, they can be problematic when used on sparsely
sampled light curves for reasons discussed in Section 2.2.

2.1. Data Description

In 2010, WISE mapped the entire sky at four photometric
filters, referred to as W1, W2, W3, and W4 with wavelength
centers near 3.4, 4.6, 12, and 22 μm, respectively (Wright et al.
2010). WISE was designed as an astrophysics all-sky mapping
mission, but its infrared sensors detected the thermal emission
from warm asteroids in the inner solar system. A data-
processing enhancement (NEOWISE; Mainzer et al. 2011a) to
the nominal pipeline was thus designed and implemented to
identify and measure the emission from these solar system
objects. Since the initial mapping phase in which all four bands
were operational (the cryogenic phase), the WISE has telescope
operated at shorter wavelengths and was later reactivated
(NEOWISE-R). In this work, we only use the cryogenic phase
of the mission.
Because WISE does not target moving objects, the asteroids

were only observed for a relatively brief (typically less than a
couple of days) period of time, referred to as an epoch. Each
epoch of observations nominally yielded between 10 and 20
individual measurements that were separated by ≈1.6 hr—the
orbital period of the spacecraft. NEOWISE flux data are stored
at the Infrared Processing and Analysis Center6 (IPAC), and
each detection of a moving solar system object was reported to
the Minor Planet Center7 (MPC), where the information
regarding the sky position and time of observation can be
retrieved. In downloading the data, we used the MPC
observation file to parse the WISE All-Sky Single Exposure
(L1b) catalog on IPAC’s Infrared Science Archive (IRSA) and
select detections acquired within 10 s of that reported to the
MPC, with a search cone of 10″. We shift the isophotal
wavelengths of the filters and perform a color correction to the
fluxes (Wright et al. 2010) using a spectrum calculated from
NEATM temperatures, as per the recommendation of the WISE
Explanatory supplement Cutri et al. (2012). Because the criteria
used to parse IPAC can potentially return contaminated (i.e., by
a background star or galaxy) or unwanted (non-asteroid)
infrared sources from the catalog, we employ Peirce’s Criterion
(Peirce 1852; Gould 1855) on the infrared color, W4 – W3, as

Table 1
Absolute Magnitudes, Slope Parameters, and Rotation Periods Used as TPM

Input

Object HV GV Prot (hr)

(91) Aegina 8.795 0.200 6.025 0a

(155) Scylla 10.87 0.087 7.959 7
(271) Penthesilea 9.724 0.134 18.787
(295) Theresia 9.841 0.185 10.730
(322) Phaeo 8.986 0.211 17.584 5
(343) Ostara 11.51 0.148 109.87
(444) Gyptis 7.837 0.193 6.214
(463) Lola 11.43 0.105 6.206
(464) Megaira 9.586 0.119 12.726
(493) Griseldis 10.72 0.183 51.940

Note.
a Indicates a Prot value that has been truncated from the reported value at four
decimal places.

(This table is available in its entirety in machine-readable form.)

6 http://irsa.ipac.caltech.edu/Missions/wise.html
7 http://www.minorplanetcenter.net/
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detailed in MacLennan & Emery (2019), to better ensure the
inclusion of only uncontaminated observations of asteroids.

2.2. Sparse Light-curve Sampling

Due to the nature of WISE’s orbit and survey cadence, a
given asteroid will be observed an average of a dozen times
during each epoch. This sparse sampling does not allow for the
construction of a well-characterized rotational light curve.
Because observations are taken at irregularly spaced rotational
phases—depending on both the number of observations and the
object’s rotation period—information may be missing for
crucial points of an object’s light curve, such as the minima and
maxima. The WISE telescope orbital cadence may oversample
certain rotational phases, which poses a challenge for extracting
scientifically important characteristics such as the mean and
peak-to-trough range of the light curve. We present here a
technique for extracting these parameters from a statistically
scant photometric set, given a priori knowledge of the object’s
rotation period. We note that applying this approach to the
objects in MacLennan & Emery (2019) does not significantly
change the results of that work. The formulations below are
similar to the analytical solution of a least-squares sinusoidal fit
to light-curve data, with some differences. We show the results
of this technique on (91) Aegina in Figure 1 and report the
fluxes computed from this method for all asteroids studied in
this work, along with observing circumstances, in Table 2.

First, we step through each possible pair of flux measure-
ment points and compute their average and difference so that
for the ith and jth points, the mean and range (absolute

difference) are mij and rij, respectively. The flux uncertainties
(δf ) are summed in quadrature so that the errors in each mean
(δmij) and range (δrij) are given by

d d d d= = +m r f f2 . 1ij ij i j
2 2 ( )

Note the factor of 2 associated with the mean, as per the rules
of error propagation. Proceeding, we calculate a weighting
factor, sij, based on the separation in rotational phase (normal-
ized to 2π radians) of the two points, fi− fj. In this weighting
scheme, pairs that sample around the same rotational phase or
half a turn (fi− fj= 0, 1/2) are given a weight of sij= 0, and
pairs separated by a quarter-turn (fi− fj= 1/4, 3/4) have
sij= 1, with linear scaling of the weights between these two
extremes (top right panel of Figure 1).
The weighted flux mean (F ) and error (dF ) are then given by

d

d
=

å å

å å
>

-

>
-

F
m m s

m s
2

i j i ij ij ij

i j i ij ij

2 2

2 2
( )

and

åå ååd d=
> >

F m s s . 3
i j i ij ij i j i ij

2 2 2 ( )

Pair means are shown in the bottom left panel of Figure 1,
along with the result of applying Equation (3) to the data.
In order to formulate the light-curve range (⧫F) and error

(δ⧫F), we employ a slightly different approach than that used
for the mean. For the ith point, we iterate across every
combination of differences between points to select the jth

Figure 1. Graphical depiction of applying Equation (2) and Equation (4) toward computing the mean (lower left) and flux range (lower right) of W4 data for (91)
Aegina. The upper-left panel shows the W4 fluxes as a function of the rotation phase, and the upper-right panel depicts the weights applied to pairs of fluxes as a
function of their phase separation. The red dashed line and dotted lines give the best fit and 1σ uncertainty for the mean and amplitude of = F 10.4 2.2 Jy and
⧫F = 1.9 ± 0.3 Jy.
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point that maximizes the range between the two: rij. Difference
pairs that are separated by a quarter-turn of the asteroid are
given more weight based on the pair weight, sij, from above
(i.e., the factor p- s1 cos 4 ij

2( ( )) ):

d p

d p
=

å -

å -

-

-
F

r r s

r s
2

1 cos 4

1 cos 4
4

ij ij ij

ij ij

2

2 2
⧫

( ( ))

( ( ))
( )

  

 

and

å åd d=F r s s . 5
ij ij ij
2 2 2⧫ ( )  

The factor, p- s1 cos 4 ij( ) , is used to scale the sij factor in
Equation (4) in order to create a weight function based on a
sinusoid, as opposed to a linear relationship, because we wish to
add weights to the error estimation that are appropriate for a
rotating nonspherical object. However, this factor is not used in
Equation (5) as doing so would create a penalty for data that do
not resemble a sine function, such as for shapes that significantly
deviate from an ellipsoid. Employing Equation (4) is essentially
the same as extracting the peak-to-trough range of the best-fit
sinusoid to the original light curve. Pair ranges are shown in the
bottom right panel of Figure 1 with the function given in
Equation (5) in red.

2.3. TPM Implementation

The TPM and data-fitting approach used here is identical to that
presented in MacLennan & Emery (2019) and is summarized
briefly here. First, the surface temperatures are modeled across the
surface of a spherical object constructed of discrete facets. The
one-dimensional heat transfer equation (Fourier’s law) is
numerically solved using the estimated insolation (incoming solar
radiation) as the energy input. The discrete facets are characterized

as planar faces and divided into latitude bins. A diurnal cycle is
simulated by rotating the facets about the object’s spin axis. Two
types of surfaces are modeled: a perfectly smooth surface in which
only direct insolation is considered, and a rough surface
comprising spherical-section craters, for which direct and multiply
scattered insolation and thermally reradiated energy from other
facets are calculated. Surface roughness is characterized by the
mean surface slope (q;¯ Hapke 1984), which is varied by differing
both the opening angle of the crater (γ) and the proportion of
surface area that is covered by those craters ( fR); the latter is
implemented when calculating the flux contribution of rough and
smooth surfaces.
We use parameterized forms of the energy balance equation

and heat diffusion equation (see MacLennan & Emery 2019,
for further details), which reduces the number of TPM variables
that are necessary to calculate a unique surface temperature
distribution, in order to construct temperature reference tables
and reduce the computational time. In this scheme, the
necessary information required for rough surface temperature
calculation is the bond albedo (Ab), thermal parameter,

e s
p

Q =
G

T P

2
, 6

B 0 eq
3

rot
( )

and subsolar latitude, whereas the smooth surface only requires
the thermal parameter and subsolar latitude. In Equation (6),
σ0 is the Stefan–Boltzmann constant, εB is the bolometric
emissivity, and Teq is the subsolar equilibrium temperature:

e s =
-

T
S A

R

1
. 7B 0 eq

4

au
2

( ) ( )

In the case of smooth surfaces, Ab is implicitly accounted for in
the Teq term and we thus do not need to specify it to run the
TPM. In the case of rough surfaces, Ab explicitly determines

Table 2
WISE Observation Circumstances and Fluxes

Object UT Datea Δtobs
b Nc RAU

d ΔAU
e αe (°)f FW3

g ⧫FW3
h FW4

g ⧫FW4
h

17 Jan 2010 1.125 12 2.604 2.376 22.19 8604 ± 1238 2721 ± 2350 12920 ± 260 3602 ± 442
(91) Aegina

5 Jul 2010 1.258 12 2.772 2.491 −21.43 5539 ± 797 1289 ± 1590 10360 ± 220 1922 ± 280

30 Jan 2010 1.125 12 2.860 2.694 20.14 599.0 ± 6.9 155.2 ± 14.7 1388 ± 27 363.3 ± 55.6
(155) Scylla

16 Jul 2010 3.902 20 3.252 2.999 −18.12 299.1 ± 3.7 92.30 ± 7.06 858.8 ± 19.0 241.3 +36.9

20 Jan 2010 0.992 10 3.278 3.104 17.46 849.2 ± 9.2 152.4 ± 18.5 2411 ± 45 341.6 ± 73.0
(271) Penthesilea

6 Jul 2010 1.258 15 3.306 3.056 −17.83 789.9 ± 9.3 169.0 ± 18.8 2296 ± 41 493.3 ± 76.6

31 Jan 2010 1.125 11 3.122 2.977 18.39 198.6 ± 2.6 22.02 ± 5.41 547.7 ± 12.6 46.63 ± 24.87
(295) Theresia

22 Jul 2010 0.992 12 3.257 3.023 −18.12 155.2 ± 2.2 16.47 ± 4.28 457.0 ± 10.0 46.24 ± 19.72

Notes. All mean flux and range values are in units of mJy = 10−29 Wm−2 Hz−1.
a UT date of the first observation.
b Time spanned by observations (days).
c Number of observations used.
d Mean heliocentric distance.
e Mean WISE-centric distance.
f Mean solar phase angle. Positive and negative values indicate post- and pre-opposition observing geometry, respectively.
g Light-curve-averaged mean flux.
h Photometric range of the light curve.

(This table is available in its entirety in machine-readable form.)

4

The Planetary Science Journal, 2:161 (12pp), 2021 August MacLennan & Emery



the amount of multiple scattering within a crater. Thus, we run
the rough surface for various values of Ab, as detailed in the
next paragraph. The surface temperatures for both the smooth
and rough-surface TPMs are stored in reference tables,
expressed as ¢ =T T Teq.

The smooth-surface TPM was run for 46 values of subsolar
latitude (0◦–90◦ in 2◦ increments) and 116 values of the
thermal parameter (spaced equally in log10 space, from 0 to
450) whereas the rough-surface TPM was iterated across 3
values of γ= {45°, 68°, 90°} and run for 46 values of subsolar
latitude (0◦–90◦ in 2◦ increments), 116 values of the thermal
parameter (spread out in log10 space, from 0 to 450), and 7
values of Agrid= {0, 0.1, 0.2, 0.3, 0.4, 0.5, 1}. These
parameters are chosen to ensure an accuracy within 1%
between the surface temperature values interpolated from the
grid and those calculated using the exact model parameters.

Surface temperatures calculated for spheres are mapped to
prolate ellipsoids (b/c= 1, where a� b� c) using closed-form
algebraic expressions (i.e., Appendix B in MacLennan &
Emery 2019) in order to model elongated bodies of differing
a/b axis ratio. Fluxes are calculated for the given observing
circumstances by interpolation of the flux calculated using the
tabulated temperatures. The flux calculated from the inter-
polated grid are within 1% of the flux calculated by running the
TPM with the exact thermophysical and observing parameters.
Finally, thermal flux is calculated by a summation of the
individual flux contributions from the smooth-surface (Bsmooth)
and crater elements (Brough) and using a graybody approx-
imation, with spectral emissivity (ελ= 0.9):

l
e

l

l

=
D

å -

+ L

lF f B T e

f a v B T e a

1 , cos

, cos , 8

S R

R R R f

au
2 smooth

rough

( ) {( ) ( ) ( )

( ) ( )} ( )

e∠ and eR∠ are the emission angle of the flat facet and crater
element. The facet area is af, and the crater element areas are

g= +a m2 1 cosR ( ( )), where m= 40 is the number of crater
elements (Emery et al. 2014). We note that the flux calculation
formula stated in MacLennan & Emery (2019) ignores the
latter two parameters for a rough surface and that the one
presented here is correct. For rough (crater) elements, v is used
to indicate if it is visible (v= 1) or not (v= 0) to the observer,
and Λ is a correction factor used to adjust fluxes that deviate
from the pre-computed Agrid values (for more details, see
MacLennan & Emery 2019).

In our data-fitting approach, the shape, spin vector (λeclip,
βeclip), roughness, and thermal inertia are left as free parameters
that we select from a predefined sample space. A sphere and
prolate ellipsoids with a/b axis ratios of 1.25, 1.75, 2.5, and
3.5 are used. For each of these shapes, we sample 25 predefined
thermal inertia values, 3 default roughness (mean surface slope;
q̄) values, and 235 spin vectors. We search for the best-fit Deff

for each combination of these parameters. Each individual
value of γ is paired with a value of fR= {1/2, 4/5, 1} that
corresponds to default mean surface slopes of q =  10 , 29 ,¯ {
and 58°}. The thermal inertia points are uniformly distributed
in log10 space from 0 to 3000 J m−2 K−1 s−1/2, and the spin
vectors are spread evenly throughout the celestial sphere, which
is achieved by constructing a Fibonacci lattice in spherical
coordinates (e.g., Swinbank & Purser 2006). For each shape/
spin vector/q̄/Γ combination we use a routine to find the Deff

value that minimizes χ2. To place confidence limits on each of

the fitted parameters, we use the reduced χ2 statistic c = c
n

2
2( )˜

to express the solutions within a 1σ range as

c c< + n
n

12
min
2 2( )˜ ˜ and consider solutions with c < 8min

2˜
to be acceptable.

2.4. Characteristic Temperature Calculation

Estimating the temperature of an asteroid at the time of
observation is necessary to perform our multivariate analysis.
Calculating a single value for the characteristic surface
temperature of an asteroid, which exhibits wide temperature
variations across the surface, can be approached in a few
different ways. One approach is to rely on the estimation of the
subsolar temperature, based on the theoretical energy balance
formulation (Equation (7)). This approach has two problems:
the assumptions made in the energy balance equation will often
lead to the overestimation of the true subsolar temperature, and
there is a low likelihood that the subobserver point is close to
the subsolar point.
In order to overcome these possible problems, we calculate the

color temperature, Tc, by independently fitting a blackbody curve
(via least-squares minimization) to the asteroid’s W3 and W4
thermal fluxes. This approach implicitly accounts for the spatial
variation in surface temperatures and explicitly calculates from the
data itself, as opposed to using the subsolar temperature, Tss. We
found that a blackbody assumption (εB= 1) does not introduce
uncertainty in the temperature, as any nonzero value would not
shift the peak of a blackbody emission curve, which is related to the
temperature through Wein’s law. Fitting a blackbody function
directly to the WISE data set is straightforward, but retroactively
applying this approach to thermal inertias found in the literature is
less so. To estimate Tc for asteroids in the literature we calculate the
relationship between the NEATM subsolar temperature Tss

8

(Equation (9)) and Tc for our set of asteroids: =Tss

´ T0.777 c
1.063 0.005( ). This best-fit equation, along with the

data, is depicted in Figure 2 by the dotted red line and blue
dotted–dashed lines showing the 1σ uncertainty bounds in the
exponent. We invert this equation and use it on the TPM results
from previous works because it is often not the case that a
temperature is reported with the thermal inertia. For these
objects we use,

he s
=

-
T

S A

R

1
, 9

B
ss

0 au
2

1 4
⎡
⎣⎢

⎤
⎦⎥

( ) ( )

and assume a beaming parameter of η= 1.1 (the approximate
mean for main-belt objects Mainzer et al. 2011b) to compute
Tss and then Tc.

3. Results and Analysis

The TPM was run for 239 objects: 3 near-Earth asteroids
(NEAs), 2 Mars-crossers (MCs), and 234 main-belt asteroids
(MBAs). Table 3 shows the best-fit and 1σ uncertainties for the
effective diameter (Deff), geometric albedo (pV), thermal inertia
(Γ), surface roughness (q̄), elongation (a/b; prolate ellipsoid axis
ratio), and sense of spin (⇑ for prograde and ⇓ for retrograde) for
all 239 objects, with the results of the 21 object from MacLennan
& Emery (2019) included at the top. Diameter errors for Deff> 10
km are below 15% of the diameter value, but can be as high as

8 This was calculated during the calibration of WISE data for each
observation and then averaged for each object.
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40% for objects smaller than 10 km. Upper and lower thermal
inertia uncertainties are, on average, 180% and 67% of the
reported value, respectively. Surface roughness could only be
estimated for 97 of the 239 (41%) objects. Informed by the model
validation tests of MacLennan & Emery (2019), we use spherical
shapes to make an estimate of the sense of spin, which could be
unambiguously estimated for all but 17 of the 239 (93%) objects.
In some cases, TPM fits only allowed for a lower or upper bound
on the surface roughness. Note that objects with TPM fits having
c > 8min

2˜ are marked in Table 3 and should be used with caution.
We combine our sense of spin results with those in MacLennan

& Emery (2019) and compare them to the spin poles of object
shapes that are in the DAMIT9 database (Database of Asteroid
Models from Inversion Techniques; Ďurech 2010). In total,
there are 101 objects both data sets and 77 of them have a sense

of spin estimate that agrees. If we assume that the DAMIT spin
axis estimates have a 100% accurate sense of spin, then the
TPM has a 76.2%± 4.3% success rate, based on binomial
probability distribution. MacLennan & Emery (2019) demon-
strated that the sense of spin success rate is dependent
on the thermal inertia, with a success rate of 65%–80% in
the range Γ= 40− 150 J m−2 K−1 s−1/2 when using spheres.
The fact that this agrees with our comparison in this work is
encouraging, yet more investigation into model development
should be performed in an effort to improve the success rate of
constraining the sense of spin using TPMs.
Based on the TPM results, we observe a correlation between

the retrograde/prograde ratio and asteroid size. We bin our set
of objects by diameter in Figure 3 and assign the uncertainty
(shown as vertical lines) of the bins to be the number of objects
with indeterminate spins in that diameter bin, or the ∼76%
success rate based on our check with DAMIT spins—

Figure 2. NEATM Tss as a function of color temperature, fit by the red dashed line (equation given in the text) with the blue dashed–dotted lines showing the 1σ
uncertainty in the fit parameters. The black solid line shows the identity function.

Table 3
TPM Results

Object Deff (km) pV Γa Tc (K) q ¯ ( ) a/bb Spinc

(91) Aegina 101.4 ± 13.85 -
+0.052 0.007

0.007
-
+19 19

31 250 ± 16 17 ± 12 1.08 ± 0.19 ⇑

(155) Scylla 38.41 ± 0.54 -
+0.054 0.003

0.002
-
+16 5

15 219 ± 12 34 ± 22 1.51 ± 0.27 ⇑

(271) Penthesilea 65.05 ± 2.30 -
+0.054 0.003

0.003
-
+16 16

33 210 ± 1 16 ± 4 1.51 ± 0.27 ⇑

(295) Theresia 30.50 ± 1.23 -
+0.220 0.013

0.013
-
+24 17

38 211 ± 3 45 ± 20 1.08 ± 0.19 ⇑

(322) Phaeo 59.66 ± 1.29 -
+0.126 0.009

0.004
-
+12 7

11 210 ± 6 L 2.16 ± 0.39 ⇓

(343) Ostara 19.65 ± 1.38 -
+0.113 0.010

0.009
-
+140 60

120 226 ± 7 L 1.51 ± 0.27 ⇓

(444) Gyptis 162.3 ± 22.9 -
+0.049 0.008

0.007
-
+74 74

74 253 ± 25 L 1.08 ± 0.19 ⇓

Notes.
a Thermal inertia values are in SI units ( J m−2 K−1 s−1/2).
b
a/b values are adjusted downward by 16% to account for the overestimation as described in MacLennan & Emery (2019).

c Indicates either prograde ( ⇑ ) or retrograde ( ⇓ ) spin direction.
d TPM results with c >min

2 8 and thus should be used with caution.

(This table is available in its entirety in machine-readable form.)

9 http://astro.troja.mff.cuni.cz/projects/asteroids3D/web.php
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whichever is larger. The horizontal lines that transect some of
the spin/diameter bins indicate the number of NEAs in that bin.
The fraction of prograde to retrograde rotators in most of the
bins in our sample are statistically indistinguishable. Only
asteroids with Deff< 8 km show a statistically significant
excess of retrograde rotators, which we discuss in Section 4.

The diameter estimates from NEATM fits presented by the
WISE team (i.e., Mainzer et al. 2011b; Masiero et al. 2011) are
reported for each sighting, or epoch, which can have pre- or
post-opposition geometry. Because the NEATM assumes a
spherical shape, it is most useful to compare the volume-
equivalent, effective diameters of the ellipsoid to their values.
We present a comparison of these diameter pairs (Deff

WISE) to the
diameter values (one per object; Deff

TPM) obtained here and plot
them (colored by observing geometry) in Figure 4. There is a
general agreement of within±15% between the two data sets,
with a few important notes. First, for objects ∼30 km and
above, our TPM diameters are slightly higher than the NEATM
model estimates of the WISE team. This discrepancy is likely
due to the inherent model differences between our TPM
approach and the NEATM used by the WISE team. Second,
objects smaller than 20 km exhibit, on average, 5% lower
diameters from our TPM analysis than from the WISE NEATM
analysis. Lastly, we highlight an interesting trend seen in
Figure 4 for different observing geometries: pre-opposition
(upright triangles) NEATM diameters are more similar to the
TPM-derived diameters for objects smaller than∼ 8 km while
the post-opposition (downward triangles) diameters remain
consistently offset from our TPM diameters at smaller sizes.
From this result we can conclude that the majority (over 50%)
of small-diameter asteroids are retrograde rotators—which
serves as an independent check on our sense of spin results
(Section 3).

A handful of asteroids with thermal inertias presented here
have previous estimates from the works of Hanuš et al. (2018),
Marciniak et al. (2019), and Pravec et al. (2019). We depict all
these estimates in Figure 5. In several instances, two thermal
inertias were reported because two shape/spin solutions were
used, for which we show both values. In nearly all cases there
is good agreement between our estimate and the previously
reported value (i.e., the error bars overlap). Only (1741) Giclas
shows a significant difference between our estimate and the
previous estimates (Pravec et al. 2019)—our estimate is smaller
by around a factor of 3, and there is no overlap at the 1σ level.
We note that our retrograde sense of spin estimate for Giclas is
opposite to that of the prograde shape solution in Pravec et al.
(2019), and our roughness estimate is much higher (≈58°
compared to 38°.8). If we were to only use the prograde
solutions from our fitting, our estimate would not change, but if
we consider higher roughness values that have a higher cmin

2˜ ,
then the uncertainty in our estimate would overlap with Pravec
et al. (2019). This difference in thermal inertia may most likely
be caused by the ellipsoidal shape assumption used in TPM
fitting.
In addition to comparing the diameters and thermal inertias

of individual objects from our data set to the findings from the
WISE team, we compare the thermal inertia results of 220
asteroids from previous TPM works. Combined with the
results from MacLennan & Emery (2019), we present thermal
inertia estimates for 250 asteroids (19 of which have previous
determinations in other works), an approximate doubling over
the tally of literature values (Table 4)—mostly in the 5–50 km
size range. We highlight previous authors and works that have
presented thermal inertia estimates for five objects or more,
notably Alí-Lagoa et al. (2020); Hanuš et al. (2015); Hanuš
et al. (2016); Hanuš et al. (2018); and Marciniak et al.
(2018, 2019). Alí-Lagoa et al. (2020) target some of the

Figure 3. The number of prograde and retrograde rotators as a function of diameter bin. Horizontal lines indicate the number of NEAs within each bin. Vertical lines
indicate the number of objects with an indeterminate sense of spin within that size range, or one, whichever is greater.
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largest asteroids in the Main-Belt. Similar to this work and
MacLennan & Emery (2019), Hanuš et al. (2015, 2018) have
collectively modeled dozens of asteroids that were observed
by WISE. Marciniak et al. (2018, 2019) specifically targeted
asteroids with longer rotation periods (Prot> 24 hr)—a group
of objects that have lacked thermal inertia estimations. We

refer to object thermal inertias presented in papers with fewer
than five objects as “miscellaneous literature”.

3.1. Multivariate Regression Model

We implement a forward stepwise multivariate regression
model (Draper & Smith 1998) on the thermal inertias presented

Figure 4. Comparison of the effective diameter values obtained by Masiero et al. (2011) and Mainzer et al. (2011b) to our reported TPM values. We plot the difference
between the individual pre- and post-opposition diameters of the WISE team and our TPM diameter as a function of the diameter from our TPM. Purple, upward-
facing and green, downward-facing triangles are data collected at pre- and post-opposition, respectively. The green line shows a running mean of the post-opposition
data, the purple line shows a running mean of the pre-opposition data, and the black line shows a running mean of the relative diameter difference for all objects.

Figure 5. Comparison of the literature thermal inertia values (open circles; Table 4) for individual objects to estimates in this work (filled circles; Table 3). All objects
with previous estimates are from Hanuš et al. (2015), except (538) Fredicke (Marciniak et al. 2019) and (1741) Giclas (Pravec et al. 2019).
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here and in previous works (Table 3 and Table 4) in order to
characterize the controlling factors. The independent factors in
this model are color temperature (Tc)—an approximation of the
surface temperature; Section 2.4—object diameter (Deff) and
rotation period (Prot). All variables, including Γ, are trans-
formed into log10 space when included in the model. We use
the inverse of the uncertainty in Γ as a weighting factor for
each object in the model. The forward stepwise regression
algorithm permits a factor to enter the model when the
relationship with the dependent variable is statistically
significant (p< .05).

The regression model selected all input variables as
statistically significant explanatory variables. The equation is
given by

G = + + +W X T Y D Z Plog log log log ,

10
c10 10 10 eff 10 rot( ) ( ) ( )

( )

with best-fit intercept and coefficient values: W=−4.65±
0.70, X= 2.74± 0.29, Y=−0.17± 0.03, and Z= 0.12± 0.05.
This best-fit model and data are shown in Figure 6. Previous
studies quantified the thermal inertia dependence on diameter
(e.g., Delbo’ & Tanga 2009), rotation period (Harris & Drube
2016), and heliocentric distance (as a proxy for temperature;
Rozitis et al. 2018) separately, but no study to date has
attempted to simultaneously account for the effect of all three
of these variables on thermal inertia. Performing a multivariate
regression, as we have done here, accounts for confounding
effects between variables, such as the codependency between
diameter and surface temperature. This is particularly
important because the smallest objects tend to be observed at
smaller heliocentric distances and thus have larger surface
temperatures.

3.2. Noteworthy Objects

Notably, two objects in this study have higher estimated
thermal inertias than any other asteroid to date:

(3554) Amun Discovered in 1986, this Venus-crossing, Aten
NEA has an estimated size of Deff= 2.71± 0.02 km. Its
rotation period of 2.53 hr places it close to the theoretical spin
barrier limit, and near-infrared reflectance observations show a
red and featureless spectrum yielding an ambiguous classifica-
tion as an X- or D-type (Thomas et al. 2014). Our moderate
albedo (pV≈ 0.241) estimate and its very high thermal inertia
are highly suggestive of a metal-rich surface, which may help
explain the thermal inertia of∼1400 J m−2 K−1 s−1/2 estimated
here. Additionally, our low roughness estimate is interesting to
note, as it suggests a surface that is relatively smooth at the
centimeter scale (i.e., on the order of ls).
(5604) 1992 FE This V-type NEA is also an Aten and has

been flagged as a Potentially Hazardous Asteroid (PHA) by the
MPC. This sub-kilometer object has a very high thermal inertia,
but with large error bars: -

+ - - -1100 J m K s600
2200 2 1 1 2. Its high

optical albedo and radar circular polarization ratio10 are
consistent with its V-type taxonomic classification and having
surface properties similar to Vesta (Benner et al. 2008).

4. Discussion

Our results show a slight excess of prograde spins at larger
sizes (Figure 3), which is generally consistent with previous
findings of spin vector distributions estimated from light-curve
inversion methods (Kryszczynska et al. 2007; Hanuš et al.
2011; Ďurech et al. 2016). The estimated success rate of our
sense of spin determinations places some uncertainty on this
claim, however. We can be most confident about a prograde/
retrograde difference in the >60 km size bin, which is
consistent with the findings of Hanuš et al. (2011) and Ďurech
et al. (2016). But the large, overlapping uncertainties in the
16–30 km and 30–60 km places doubt on any claim of excess
prograde rotators. The prograde excess for these large objects is
likely a remnant of the primordial spins of large protoplanets
due to the accretion direction of pebbles into planetesimals
(Johansen & Lacerda 2010).

Table 4
TPM Results from the Literature

Object HV GV Prot (hr) Deff (km) pV Γa Tc (K) Source(s)

(1) Ceres 3.21 0.02 9.0742 951 ± 8 -
+0.100 0.006

0.004
-
+25 10

15 238 ± 15 [2]
(2) Pallas 4.08 0.08 7.8132a 536 ± 5 -

+0.142 0.005
0.006

-
+30 15

15 234 ± 15 [2]
(3) Juno 5.29 0.34 7.2095 254 ± 4 -

+0.209 0.019
0.02

-
+70 40

30 245 ± 15 [2]
(4) Vesta 3.00 0.23 5.3421 530 ± 24 -

+0.394 0.024
0.011

-
+30 10

10 230 ± 10 [3]
(6) Hebe 5.71 0.27 7.2744a 198 ± 3 -

+0.24 0.01
0.01

-
+50 35

40 205 ± 15 [19]
(8) Flora 6.35 0.24 12.865 142 ± 2 -

+0.252 0.014
0.014

-
+50 30

35 243 ± 15 [2]
(10) Hygeia 5.38 0.11 27.63 441 ± 6 -

+0.063 0.002
0.002

-
+50 25

20 210 ± 15 [2]
(16) Psyche 5.84 0.11 4.195 9a 242.5 ± 25 -

+0.138 0.015
0.015

-
+120 40

40 212 ± 10 [21]

Note.
a Indicates that the reported Prot value has been rounded to four decimal places.
References. [1] Alí-Lagoa et al. (2014); [2] Alí-Lagoa et al. (2020); [3] Capria et al. (2014); [4] Delbo’ & Tanga (2009); [5] Devogèle et al. (2020); [6] Emery et al.
(2014); [7] Hanuš et al. (2015); [8] Hanuš et al. (2016); [9] Hanuš et al. (2018); [10] Horner et al. (2012); [11] Jiang et al. (2020); [12] Keihm et al. (2012); [13] Leyrat
et al. (2011); [14] Lim et al. (2011); [15] MacLennan & Emery (2019); [16] Marchis et al. (2012); [17] Marciniak et al. (2018); [18] Marciniak et al. (2019); [19]
Marsset et al. (2017); [20] Matter et al. (2011); [21] Matter et al. (2013); [22] Mueller (2007); [23] Mueller et al. (2010); [24] Müller & Blommaert (2004); [25]
Mueller & Lagerros (1998); [26] Müller et al. (2004); [27] Müller et al. (2011); [28] Müller et al. (2013); [29] Müller et al. (2014); [30] Müller et al. (2014); [31]
Pravec et al. (2019); [32] Rozitis et al. (2013); [33] Rozitis & Green (2014); [34] Rozitis et al. (2014); [35] Rozitis et al. (2018); [36] Wolters et al. (2011); [37] Yu
et al. (2014); [38] Yu et al. (2017).

(This table is available in its entirety in machine-readable form.)

10 https://echo.jpl.nasa.gov/asteroids/1992FE/1992FE_planning.2017.html
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Our results show a curious overabundance of small (<8 km)
retrograde rotators. An overabundance of retrograde rotators
among NEAs was presented by Spina et al. (2004), with the
cause attributed to a dynamical selection effect: retrograde
MBAs are more likely to feed into resonances, via the
Yarkovsky effect, that alter their orbits into near-Earth space
(Bottke et al. 2002). Properly investigating and explaining
this result is beyond the scope of this work, but we suspect
that modeling of YORP spin obliquity evolution (e.g.,
Vokrouhlický et al. 2003) and/or the spin alteration due to
collisions (Ševeček et al. 2019) should be used to investigate
this topic. Yet, the MBAs studied here have not yet been
subjected to this dynamical selection effect. We also note that,
because we only consider asteroids with rotation periods in the
ALCDB, our object set is subject to the observational biases
inherent in the determination of rotation periods. This includes,
but is not limited to, the skew of known rotation periods less
than Earth’s rotation period and object shapes that depart from
spherical shapes.

The multivariate model of asteroid thermal inertia indicates
that temperature is a strong controlling factor (p< .001). The
best-fit coefficient in Equation (10) can be written as the
proportionality G µ Tc

2.74 0.29. Because surface temperatures
generally scale with the inverse square of the heliocentric
distance (Equation (7)), it follows that Γ∝ rα. Our results can
be expressed in terms of this proportionality by using

= a-T Rc
X

au
2 , which gives α=−1.37± 0.14. If only the

radiative component of thermal conductivity on thermal inertia
is considered, the expected coefficient would be α=−0.75.
Rozitis et al. (2018) calculated α for three objects ranging from
−2.5 to −1, with each object having a different best-fit α. Our
result is remarkably consistent with all three objects (see
Figure 8 in Rozitis et al. 2018), although the asteroids studied
in that work exhibited vastly different thermal inertia depend-
ence on heliocentric distance. Similar to Harris & Drube
(2016); Rozitis et al. (2018) suggested that increased solar
heating would allow the thermal wave to sample higher thermal
inertia material in the subsurface due to an increase in ls. This
would result in an increase in thermal inertia for warmer objects
if the thermal conductivity and/or bulk density increases with
depth—as is the case for the Moon (Keihm & Langseth 1973).
In the 200–350 K range—the approximate range for most

asteroids—the heat capacity is also temperature dependent
(cs∝ T; Opeil et al. 2012; Macke et al. 2019) and should also
contribute to the thermal inertia temperature dependence. The
overall dependence of thermal inertia on temperature should be
stronger than that predicted using only the radiative component
of thermal conductivity, namely Γ∝ T2. When combining the
temperature dependence of the radiative component of thermal
conductivity and heat capacity together into the thermal inertia
dependency of temperature, the expected relationship is still
weaker than the observed dependence presented here.

Figure 6. Thermal inertia dependence on surface (color) temperature, object diameter, and rotation period. The black lines show the best-fit multivariate regression
model to the data (dashed) and 1σ uncertainty (dotted). Red points are objects from this work (Maclennan’21; Table 3) and MacLennan & Emery (2019). Other colors
indicate the source from other works (Table 4), as indicated in the upper-right panel, where miscellaneous literature refers to papers that present fewer than five thermal
inertias.
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Our multivariate regression model for thermal inertia also
selected the diameter (p< .001) and rotation period (p= .011)
as statistically significant factors. The trend of increasing
thermal inertia with smaller asteroid size was established by
Delbo’ et al. (2007) and has been supported by subsequent
works that increase the overall number of thermal inertia
estimates (Delbo’ et al. 2015). Delbo’ & Tanga (2009) found a
power-law exponent of −0.21± 0.4 between diameter and
thermal inertia for NEAs and MBAs with sizes <100 km. The
Delbo’ & Tanga (2009) value is consistent with, but somewhat
smaller than, our value of −0.17± 0.03, implying a stronger
relationship. It is not unexpected that our estimate is larger
because we account for the temperature dependency. For
example, Rozitis et al. (2018) found that the diameter and
temperature power-law exponents are inversely correlated and
that α=−1.32 corresponds to a power-law diameter exponent
of −0.18, which is consistent with our estimate of
−0.17± 0.03.

Whereas the dependency on diameter is statistically robust,
our findings show that the relationship between thermal inertia
and rotation period is barely distinguishable from a slope of
zero (Z= 0.12± 0.05). Harris & Drube (2016), who used a
NEATM-based thermal inertia estimator, found a significant
correlation between thermal inertia and rotation period for
asteroids with rotation periods spanning 2–200 hr. However,
the works of Marciniak et al. (2018, 2019) found an abundance
of low-Γ slow rotators (Prot> 12 hr) using a TPM that
explicitly accounts for thermal inertia. Considering the results
in this paper and from these previous works, we claim that the
relationship between thermal inertia and rotation period, if
present, is very weak.

Future thermophysical modeling efforts should target more
slow rotators to better characterize their thermal inertia and
understand its relationship (or lack thereof) with the asteroid
rotation period. Higher thermal inertias could be indicative of
the increase in thermal conductivity (or bulk density due to
compression) for objects with large ls values. These objects
with large ls, which include asteroids with high surface
temperatures (Rozitis et al. 2018), can be used to investigate
possible changes in regolith properties as a function of depth
(i.e., Harris & Drube 2016).

5. Conclusions and Follow-up Work

In this work, we applied the method of MacLennan & Emery
(2019) to WISE multiepoch observations in order to estimate
the effective diameter, geometric albedo, thermal inertia, and
surface roughness for 239 asteroids (Table 3). Additionally, we
report the shape and sense of spin for a large fraction of these
objects Section 3. Our thermal inertia estimates are consistent
with previous values from the literature for individual objects
(Figure 5) and for objects with similar size and rotation period.
From our results, we conclude that surface temperature,
asteroid size (inverse relationship), and rotation period are
controls of the thermal inertia of asteroids. We find that the
relationship between thermal inertia and size is present but less
pronounced than suggested in previous works that do not also
consider the influence of temperature (Section 3.1). The
temperature dependence (G µ Tc

2.74 0.29) is larger than the
theoretical prediction of Γ∝ T1.5 if only the temperature
dependence of the radiative component of thermal conductivity
is considered, and of Γ∝ T2 if the temperature dependence of
heat capacity is additionally considered. Instead, this

relationship between thermal inertia and temperature is
consistent with the temperature dependency of both the heat
capacity and thermal conductivity (Section 4). The thermal
inertia dependence on object rotation period is weak, and
increased statistics of slow-rotator thermal inertias in the future
could either support or negate this finding.
In a follow-up work, we will utilize a thermal conductivity

model to estimate characteristic grain sizes for each object in
this thermal inertia data set. These grain sizes will then be used
to investigate plausible regolith development mechanisms such
as impact erosion and thermal fatigue cycling. We will then run
the grain sizes through a multivariate regression model similar
to that performed here in order to explore the controlling
factors of regolith evolution on asteroids.
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