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A B S T R A C T   

Understanding the distribution of matter within our Solar System requires a robust methodology for evaluating 
the composition of small objects in the asteroid belt. Existing asteroid taxonomies have variously been based on 
spectral features relating to mineralogy and on classification of asteroid spectra alone. This project tests a 
fundamentally different approach, using machine learning algorithms to classify asteroids based on spectroscopic 
characteristics of existing meteorite classes. After evaluating four classification techniques built on labeled 
meteorite spectral data, logistic regression (LR) was determined to provide the most accurate results that 
distinguish eight robust groups of meteorite classes to which asteroid spectra can then be matched. The groups 
are rooted in mineralogical composition and directly relate meteorites to potential host bodies. A standalone LR 
algorithm classifies unknown asteroid spectra uniquely as one of eight specific group, allowing the distribution of 
compositions in the asteroid belt to be evaluated.   

1. Introduction 

We may well be living in the Golden Age of asteroid research (Bur-
bine, 2017). The Dawn mission has mapped the largest and third largest 
((1) Ceres and (4) Vesta, respectively) asteroids in the Main Belt and 
completed geochemical analyses of their surfaces (Russell and Ray-
mond, 2011). The Hayabusa and Hayabusa2 missions have returned 
asteroid fragments to Earth (Nakamura et al., 2011; Yada et al., 2022), 
and another asteroid mission (OSIRIS-REx) will land with additional 
samples (Lauretta et al., 2017). The Lucy mission to a Main Belt asteroid 
and seven Trojans launched in 2021 (Levinson et al., 2021), and the 
Psyche mission to a metal asteroid will launch in 2023 (Elkins-Tanton 
et al., 2020). Public interest in Earth-altering impacts is high as evi-
denced by news stories and movies, and the potential for mining aster-
oids has been studied (e.g., Kargel, 1994). The attention is further 
justified because asteroids represent important building blocks of our 
Solar System. They hold the keys to furthering our understanding of 
planet formation and evolution from a dust-filled protoplanetary disk 
(Burbine, 2017). Although data on asteroid compositions have para-
mount importance to gaining this knowledge, very little is known about 
them because there have been so few sample return missions. Asteroid 
imagery and remote spectroscopy provide only tantalizing glimpses into 

their surface and bulk compositions. Improving interpretation of those 
remote measurements is our best hope for learning about the details of 
the distribution of solid matter within the asteroid belt. 

The first steps toward that capability have come from attempts to 
classify asteroids using features (e.g., bands and slopes) from spectros-
copy, which is fundamentally representative of composition. Several 
such asteroid taxonomies have been developed, (e.g., Chapman et al., 
1975; Tholen, 1984; Bus and Binzel, 2002a), most recently the Bus- 
DeMeo (BDM) classifier (Bus and Binzel, 2002a, 2002b; DeMeo et al., 
2009;), which uses slope scores and principal component analysis of 
reflectance spectra to group similar objects. However, because there are 
only subtle distinctions among many classes, the current BDM web tool 
(http://smass.mit.edu/busdemeoclass.html) is challenging to use. It 
requires visual inspection to classify many objects (e.g., ~40% of ob-
jects; Burbine et al., 2019), so the resultant taxonomy is often quite 
subjective. Its accuracy is unconstrained. 

Other studies (e.g., Oszkiewicz et al., 2014, 2023; Klimczak et al., 
2021; Penttilä et al., 2021, 2022; Colazo et al., 2022) have applied a 
wide variety of machine learning approaches to asteroid classification. 
Mahlke et al. (2022) and Klimczak et al. (2022) leveraged new sets of 
observations. Although these and other new asteroid-based classifica-
tions show tremendous promise for creating useful groups or clusters, 
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they cannot directly contribute compositional or mineralogical insights 
into the constituents of those groups because they have no such data 
upon which to train. Such approaches are considered unsupervised in 
that the true group structure is unknown. 

This paper takes a fundamentally different approach by using 
meteorite spectra, which do represent ground truth for their unknown 
asteroid parent bodies, and thus their laboratory spectra can be used to 
develop and test a new asteroid taxonomy. A meteorite-based classifi-
cation system benefits from a very robust 45-class taxonomy that is 
based on mineralogical, petrological, and chemical properties; meteorite 
spectra can thus be labeled by group. This allows the accuracy of ma-
chine learning classification models to be evaluated before being applied 
to asteroid spectra. This project trains machine learning models on 1422 
laboratory meteorite spectra and then applies the results to 605 asteroid 
spectra to evaluate the distribution of compositions in the asteroid belt. 

2. Background 

Several asteroid taxonomies based on spectroscopy have been 
developed over the years since the first asteroid spectra were collected 
(McCord et al., 1970). Chapman et al. (1975) initiated a system for 
classification by assigning the “C” and “S” designations to numerous 
asteroids to differentiate between lower albedo and weaker absorption 
band bodies (C-types) and higher albedo and stronger absorption band 
bodies (S-types). Objects that did not fit into either class (e.g., (4) Vesta) 
were given the U designation. David Tholen (1984) greatly expanded on 
this taxonomy using data from the Eight-Color Asteroid Survey (ECAS) 
that observed asteroids from ~0.3 to ~1.1 μm (Zellner et al., 1985). 

Bell (1989) tried to link the Tholen (1984) classes to different de-
grees of heating. He divided the Tholen (1984) classes into three main 
super-classes (primitive, metamorphic, and igneous) based on the 
amount of heating the object may have experienced. Bell (1989) 
assumed that the S-types were primarily igneous objects that experi-
enced significant amounts of melting, which is not the common inter-
pretation of those objects today. Many to most S-types are now assumed 
to have ordinary chondrite mineralogies (e.g., Chapman, 1996; DeMeo 
et al., 2022). 

Richard Binzel and students developed a taxonomy using CCD 
spectra (~0.4 to ~1.1 μm) of asteroids (Bus and Binzel, 2002a) as part of 
SMASS II (Small Main-Belt Asteroid Spectroscopic Survey). Bus and 
Binzel (2002b) found that there was a continuum of spectral properties 
for most asteroid classes and created a number of subtypes. Using the 
more extensive near-infrared spectral data subsequently collected by the 
Binzel group coupled with their CCD spectra, DeMeo et al. (2009) 
created the modern Bus-DeMeo (BDM) asteroid taxonomy, extending 
the Tholen (1984) and Bus and Binzel (2002b) taxonomies into the near- 
infrared. 

Beginning with Tholen (1984), these classification systems used the 
statistical method of principal components analysis (PCA) to transform 
spectra into low dimensions for exploratory analysis, after which they 
manually defined classes. PCA is one of the oldest multivariate tech-
niques in statistics (first proposed by Pearson in 1901). It transforms a 
data set with many correlated variables (like the wavelengths of light in 
reflectance spectra) into the space of principal components, resulting in 
new variables that are not linearly correlated. The top several principal 
components may be used as a low-dimensional summary of the data for 
visualization and exploration. BDM and related classification systems 
were created by visually identifying clusters in the space of principal 
components, and then identifying linear decision rules to separate 
clusters. 

There are several limitations of this early approach. Principal com-
ponents have no intrinsic meaning and simply capture primary axes of 
variability in the data. They may relate to “nuisance” sources of vari-
ability, e.g., from the measurement process, instead of intrinsic vari-
ability. This may be a significant problem for data collected using 
different telescopes or acquisition parameters. However, PCA was a 

commonly used methodology at the time the BDM taxonomy was 
developed. PCA is a linear method, so cannot capture non-linear cor-
relations in the data. Finally, PCA treats each spectrum as an unstruc-
tured vector and does not understand the relationship between 
measurements at different wavelengths; it therefore does not make the 
best statistical use of the limited data. 

The most significant weakness of these asteroid-based taxonomies is 
that they are empirical mathematical constructions that do not link 
directly to either mineralogy or chemistry — classes are defined visually 
using clusters in PCA space and are completely phenomenological. 
Moreover, they were created using small data sets. BDM was originally 
established using only 371 spectra that were collected using the same 
telescope and protocol. Because the BDM method uses no “labeled” 
samples for which ground truth is available, its error analysis is not 
robust. Finally, differences among spectral classes are subtle, and it is 
unclear how they relate to mineralogical differences. The same issues 
arise with more recently proposed asteroid taxonomies that use machine 
learning. 

In contrast, meteorite taxonomy is firmly grounded in mineralogy 
and chemistry and has been developed over many decades. The current 
method of classification involves primarily studying a thin section to 
determine composition, mineralogy, and texture. There are three major 
super-groups: chondrites (never melted), achondrites (formed from a 
melt), and irons (which melted and then differentiated). There are also 
important subdivisions. 

Of course, not all meteorite groups are thought to have formed on 
separate bodies. For example, almost all members of the howardite, 
eucrite, and diogenite (HED) groups likely originated on one parent 
body, thought to be Vesta (e.g., McCord et al., 1970; Larson and Fink, 
1975; McSween et al., 2013) due to compositional, isotopic, and spectral 
similarities. However, some HEDs with “anomalous” oxygen isotopic 
values are thought to originate on separate parent bodies from Vesta 
(Scott et al., 2009). The linked acapulcoites and lodranites have similar 
oxygen isotopic compositions but just differ in grain size (McCoy et al., 
1997). 

Current methodology for distinguishing among these classes requires 
careful petrologic study and a lot of work. Although this procedure 
represents the gold standard in meteorite classification, development of 
an alternate field method for rapid meteorite classification might be 
useful for preliminary taxonomy. But most importantly, a spectroscopy- 
based meteorite classification enables compositional relationships to be 
drawn between meteorites and their parent bodies, and supports crea-
tion of an asteroid taxonomy linked directly to that of meteorites. 

3. Materials and methods 

An overview of the processes used in this project is given in Fig. 1. 
The underlying basis for this project is the assumption that the best 
(albeit imperfect) spectroscopic proxies for asteroid belt objects are the 
meteorites that originate from them. Accordingly, it was necessary to 
request, prepare, and acquire spectra of a large number of meteorites to 
ensure that a representative suite of spectra was available for our clas-
sification study. Once those data were obtained, several machine 
learning techniques for classification were tested, and a penultimate 
model was used to classify asteroid spectra. Details of these steps follow. 

3.1. Data studied 

Meteorite spectra were acquired on reflectance data acquired at 
RELAB at Brown University. Some data were acquired on meteorite 
spectra from their public archive but several meteorite classes were 
poorly represented. To remedy this deficiency, we requested and 
received 116 additional meteorites from the Antarctic and other mete-
orite collections at Johnson Space Center and the National Museum of 
Natural History and prepared them by hand crushing and sieving to 
45–120 μm particle sizes before spectral acquisition. We note that the 
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additional added samples mitigate but do not remove the bias of the 
RELAB data set toward falls. There is most certainly a mismatch in 
composition between asteroid populations and the meteorite collections 

because some asteroid populations are more effective in delivering 
meteorites to the Earth (Vernazza et al., 2008; Granvik and Brown, 
2018; Binzel et al., 2019). Moreover, the meteorite flux is time- 

Fig. 1. Flow chart of this project. Steps leading to the three main results.  

Table 1 
Derived classes based on meteorite spectra used to predict asteroid spectra.  

Group name Meteorite 
class 

Major mineral components Spectral similarity 

CM/C2/CR 

CM Fe-Mg serpentines, clumps of tochilinite/cronstedtite, sulfides, magnetite. 
Chondrules contain olivine, low-Ca clinopyroxene, and isotropic glassy mesostases. 

Relatively featureless spectra lacking major olivine and 
pyroxene features 

C2 Abundant hydrated minerals and abundant fine-grained matrix; chondrules are 
present; sulfides are Ni-bearing 

CR 
Olivine, low-Ca pyroxene, metallic FeNi, troilite, FeNi sulfides, Fe–Mg serpentines, 
and magnetite. 

CO/CV 
CO 

Olivine, low Ca-pyroxene and pigeonite, feldspathic glass, metallic FeNi, and minor 
sulfides, and CAIs* 

Relatively weak absorption features due to olivine and 
pyroxene 

CV Olivine, low-Ca pyroxene, glass, metallic FeNi, troilite, anorthite, and CAIs* 

CK/R/ 
brachinites 

CK Olivine, low-Ca pyroxene, anorthite, diopside, fassaite, magnetite, pentlandite, and 
CAIs* 

Olivine-dominated absorption features 
R 

Abundant olivine, less abundant in low-Ca pyroxene. Can also contain pigeonite, 
augite, diopside, albite or oligoclase, and spinel. 

Brachinites Olivine-dominated, Ca-pyroxene, chromite, plagioclase, Fe-sulfides 

H/L/LL/URE 

H 
olivine, low-Ca pyroxene, pigeonite, FeNi metal, troilite. Approximately equal 
abundances of olivine and pyroxene. Less Fe-rich olivine and low-Ca pyroxene than 
L chondrites. 

Absorption features due to olivine and pyroxene 
representing a continuum between varying amounts of 
olivine and pyroxene 

L 
olivine, low-Ca pyroxene, pigeonite, FeNi metal, troilite. Less Fe-rich olivine and 
low-Ca pyroxene than LL chondrites. Olivine more abundant than pyroxenes. FeNi 
metal less abundant than H chondrites. 

LL 
olivine, low-Ca pyroxene, pigeonite, FeNi metal, troilite. Olivine much more 
abundant than pyroxenes. FeNi metal less abundant than L chondrites. 

Ureilite Carbon-bearing, olivine-pyroxene achondrites. Typically olivine is more abundant 
than pyroxene. 

EH/EL/AUB 
EH Low-Ca pyroxene, forsterite, calcic pyroxene, plagioclase, FeNi metal, sulfides Featureless spectra due to being dominated by enstatite and 

FeNi metal EL Low-Ca pyroxene, forsterite, calcic pyroxene, plagioclase, FeNi metal, sulfides 
Aubrites Enstatite-dominated, albite, diopside, forsterite, sulfides 

ACA/LOD 
Acapulcoites Orthopyroxene, olivine, Cr-diopside, sodic plagioclase, FeNi metal, troilite. 

Orthopyroxene-dominated spectra 
Lodranites 

Orthopyroxene, olivine, Cr-diopside, sodic plagioclase, FeNi metal, troilite. Coarser 
grained than acapulcoites. 

IAB/IIAB 

IAB FeNi metal, tetrataenite, troilite, daubréelite, schreibersite 
Featureless, slightly red spectra due to the abundance of 
FeNi and absence of silicates IIAB 

FeNi metal, kamacite, martensite, taenite, tetrataenite, troilite, daubréelite, 
schreibersite, cohenite, haxonite, edscottite, graphite, diamond, carlsbergite, 
chromite, fusion-crust magnetite, merrillite, chlorapatite 

EUC/DIO/ 
HOW 

Eucrites 
Igneous volcanic monomict rocks rich in pyroxene (pigeonite) and calcic 
plagioclase 

Continuous range of absorption features due to varying 
amounts of pyroxene Diogenites 

Orthopyroxenite monomict rocks with <10% plagioclase and minor chromite, 
olivine, silica, pigeonite, and augite. 

Howardites Polymict breccias composed predominantly of eucritic and diogenitic clasts.  
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dependent. Accordingly, this study is only a start at trying to create a 
representative training set to test the methodology proposed; a logical 
next step would be to create artificial mixtures of materials and acquire 
their spectra to try to mimic asteroids believed to be poorly represented 
in meteorite collections. 

The choice to use data from particulate samples was purposeful to 
avoid effects of variable angles of incidence by presenting randomly 
oriented grains to the spectrometer. This is likely the best proxy for 
asteroid spectra, which generally sample a large surface area on an 
object. 

Each of these meteorite spectra was examined for irregularities and 
removed if the sample appeared to be excessively weathered or the 
spectra was taken under special experimental conditions. Spectra from 
class were divided into five different folds such that no two folds con-
tained a spectrum from the same meteorite. If a meteorite class had 
fewer than five spectra, it was removed from the data set. The only 
exception to this is that the IAB and IIAB (Table 1) classes were com-
bined and then placed into five folds together. This process culminated 
in 1422 meteorite spectra spanning 20 classes (Excel table Data S1). The 
remaining classes are unrepresented in this classification but they 
represent either very rare classes or ones from which it was difficult to 
prepare particulate samples (i.e., iron meteorites). The meteorite data 
covered the standard visible to near-infrared range for RELAB, which is 
from 0.3 to 2.6 μm at increments of either 0.005 or 0.01 μm. 

To test the accuracy of the RELAB-based meteorite classification, we 
obtained a suite of 354 meteorite spectra acquired in the laboratory of 
Dr. Edward Cloutis at the University of Winnipeg (Excel table Data S2). 
Those data were collected from 0.35 to 2.5 μm at 0.001 μm intervals. 
Although this data set did not include any representation from the 
acapulcoite/lodranite class, it does provide a useful test of prediction 
accuracy for unseen data. 

Asteroid spectra were obtained from SMASS (DeMeo et al., 2009) 
and MITHNEOS (MIT-Hawaii Near-Earth Object Spectroscopic Survey) 
(Binzel et al., 2019). MITHNEOS includes both NEAs (near-Earth as-
teroids) and Mars-crossers. The asteroid spectra are primarily a combi-
nation of visible CCD (charge-coupled device) spectra and near-infrared 
spectra taken at the NASA IRTF (Infrared Telescope Facility). The 
SMASS data range from 0.45 to 2.45 μm at increments of 0.005 μm. The 
MITHNEOS data, which were taken from a variety of sources, primarily 
range from ~0.4 to ~2.45 μm at increments of ~0.005 μm. Because 
many asteroid spectra were unclassified, Burbine et al. (2019) deter-
mined and cross-checked Bus-DeMeo classes for 605 asteroid spectra 
using either the supplied labels from MIT or the online tool. A list of 
spectra analyzed is given in Excel table Data S3. 

Meteorite and asteroid data were compressed by downsampling 
using ‘decimation’ to cover the range from 0.35 or 0.45 (i.e., beginning 
at the lowest wavelength of the source spectra) to 2.5 μm at 0.01 μm 
resolution. Every nth data point was used, depending on the resolution 
of the source spectra as given above. 

Spectral data files were reformatted for consistency with attached 
headers containing acquisition parameters and other information. The 
same set of headers was used for both meteorite and asteroid data for 
ease of manipulation. 

Existing data were split into different groups for training and eval-
uating a machine learning classifier. The large meteorite and asteroid 
data sets were each separated into three groups: training data (60% of 
spectra) to build the models, validation data (20%) to choose which 
model had the best performance, and test data (20%) to evaluate the 
accuracy of the best-performing model. Selection of spectra for each 
group was stratified such that the number of spectra from the same 
group represented in each dataset reflect these same proportions. 

3.2. Data analysis tools 

Data analysis used an in-house tool written by Sydney Wallace in 
Python and utilizing the SciKit-learn library as described in Carey et al. 

(2017). Data pre-processing techniques were evaluated for their po-
tential to standardize spectra and improve classification performance. It 
was hoped that they might transform the data in each class to be more 
consistent and exacerbate differences among other classes. For logistic 
regression (LR), baseline removal (BLR) was tested using Fully Auto-
mated Baseline Correction (FABC) (Cobas et al., 2006; Kajfosz and 
Kwiatek, 1987), Adaptive Iteratively Reweighted Penalized Least 
Squares (AirPLS) (Zhang et al., 2010), Asymmetric Least Squares (ALS) 
(Eilers and Boelens, 2005), or Morphologically Weighted Penalized 
Least Squares (MPLS) (Li et al., 2013). These were found to improve 
prediction accuracy only slightly, from ~55% for no BLR to ~60% for an 
LR model. Support vector machine (SVM) models are more accurate 
(~63%) and relatively insensitive to pre-processing; this is likely due to 
the fact that they learn non-linear models and have capacity to auto-
matically cope with the types of variation (scaling, offset, linear trend, 
etc.) that pre-processing seeks to control. Normalization, squashing, and 
smoothing also affect accuracy in different ways depending on which 
baseline removal algorithm is used. In general, we found that while 
some methods create greater similarity within classes, they also remove 
information embedded in the data that would benefit classifiers. For this 
reason, we only used only one preprocessing method, which was 
normalization. 

Normalization is necessary allow data acquired for different dura-
tions and under varying conditions to be compared, not only for the 
meteorite models but also to allow predictions of asteroid belt objects 
based on their spectra. The philosophy behind normalization for spectral 
data is to try to find the wavelength that is most invariant and therefore 
relatively constant in all the spectra analyzed. In this application, 
spectra over the VNIR are affected to first order by the composition of 
the meteorites/asteroids being studied. For example, varying amounts of 
pyroxene and olivine will affect intensities around 1 and 2 μm, so those 
wavelengths would not be optimal for normalization. Other factors 
affecting spectral intensity include many of the steps in the pipeline by 
which spectra images are reduced. These include factors such as flat field 
correction, sky subtraction, wavelength correction and atmospheric 
correction (Binzel et al., 2019). Because of all the factors affecting 
spectral intensity at varying wavelengths, it is perhaps unrealistic to 
expect any “idea;” wavelength for normalization. 

Normalizing the spectral intensity at 0.55 μm, which is the solar 
maximum and center of the V filter band, is a common but untested 
historical convention (e.g., Bus and Binzel, 2002a, 2002b; Penttilä et al., 
2021); others have used the center of the J filer band at 1.215 μm (e.g., 
Binzel et al., 2019). Given this potential ambiguity, the optimal wave-
length for classification in our data set was evaluated by normalizing all 
meteorite spectra to every wavelength between 0.35 and 2.5 at 0.05 μm 
increments to look for optimal performance (Fig. S2) for all four clas-
sifiers. The most accurate wavelength for each model was used in sub-
sequent asteroid predictions as seen in Fig. 2. The LR model normalized 
to the energy at 0.70 μm was ultimately chosen as the optimal model for 
application to asteroids, albeit with incremental improvement over the 
choice of 0.55 μm. 

3.3. Experimental design 

Four different classifiers were considered for this task: LR, SVMs, 
kernel fisher discriminant analysis (KFDA), and quadratic discriminant 
analysis (QDA). Background on the SVM, LR, and QDA methods is given 
in Hastie et al. (2009) while KFDA is discussed in Mika et al. (2001). LR, 
SVM, and KFDA are discriminative models, which means they are 
optimized to discriminate samples of different classes as opposed to 
modeling the full distribution of all samples within each class. All 
methods can also be characterized by the type of decision boundaries 
within the data space they use to classify samples. LR uses linear deci-
sion boundaries, QDA uses quadratic boundaries, and kernelized SVM 
and KFDA both allow the boundaries to be non-linear in a way that 
depends on the kernel. 
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Logistic regression predicts the probability that a sample belongs to 
each class given a set of features and parameters. It first assigns a real- 
valued score to each class, then uses a “softmax” function to map class 
scores to probabilities, which are nonnegative and sum to one. The class 
scores are linear functions of the features with parameters or “weights” 
to be learned by numerically maximizing the log-probability of the 
correct class averaged over all training examples–i.e., the conditional 
log-likelihood (given the features). There are many algorithms for con-
ducting the maximization, but LBFGS was chosen because it is 
commonly used with mid-size and small datasets. The number of itera-
tions for training was limited to 1500. To keep the model from over-
fitting, an L2 regularization hyperparameter was included to penalize 
larger weights. However, results showed that not much regularization 
was needed to achieve optimal performance. The best regularization 
value found for our dataset was 218. 

An SVM is different from LR in that instead of trying to maximize the 
likelihood, it attempts to place decision boundaries to create the largest 
margins between classes. Furthermore, a kernel function can be 
employed to make a kernel SVM, which nonlinearly maps the data from 
the input space to a higher dimensional feature space. Kernel SVMs use 
linear decision boundaries in the higher-dimensional feature space, 
which correspond to non-linear boundaries in the original space. 
Therefore, kernelization can be thought of as turning a linear model into 
a nonlinear model and providing greater model flexibility. The trick to 
doing this without drastically higher computational costs is to represent 
the data via the kernel matrix giving the pairwise similarity comparisons 
between the data. The RBF kernel was chosen as it is the most widely 
used kernel and is known to handle most types of data considerably well. 
The hyperparameters for this model are the regularization constant (C) 
and kernel inverse length-scale gamma. Again, a larger C value was used 
which allows more flexibility for the decision surface. Gamma controls 
how much influence a given sample has over those around it. A larger 
gamma value will cause a given training example to only have influence 
on data that are closer to it. The optimal model had a C value of 218 and 
a gamma of 0.00045. 

KFDA is a kernelized version of linear discriminant analysis. KFDA 
attempts to project each instance of data into a subspace that maximizes 
the variance between class means and minimizes the variance between 
data within the same class. These two optimization problems can be 
merged via a function known as the Fisher criterion (29,30). The solu-
tions to the optimization problems are known as Fisher directions, and 
they divide the classes based on where the data from different classes 
differ and where the data within a class are close together. Again, the 

RBF kernel was selected and the model was set to find eight Fisher di-
rections, the maximum number of directions allowed for the eight 
defined classes in this taxonomy. Model performance when trained with 
eight Fisher directions performed far better than models trained with 
fewer Fisher directions. Again, gamma was another hyperparameter 
since the RBF kernel was used. The model with a gamma value of 0.0004 
achieved the best validation performance. 

QDA was the only true generative model implemented in this study 
in that it constructs a class conditional probability distribution for the 
samples within each class, rather than just drawing decision boundaries 
between classes. It performs supervised dimensionality reduction by 
projecting the data into a linear subspace that maximizes class separa-
tion. Given the class-conditional distributions, Bayes’ rule is used to 
calculate the conditional probability (i.e., posterior probability) of the 
class label given the sample, for each possible label. The class that 
maximizes the posterior probability is then selected as the prediction for 
that sample. QDA assumes that the data is normally distributed within 
classes. It does not require each class-conditional distribution to share 
the same covariance, but instead uses a user-defined regularization 
parameter to penalize the per-class variance. This is what allows QDA to 
have greater complexity than linear discriminant analysis: if all class- 
conditional distributions shared the same covariance, the resulting de-
cision boundaries would be linear. Prior to training the QDA model, 
principal component analysis (PCA) was used to transform the training 
data into eight components to then be fed as input for QDA. This helped 
QDA handle collinearity better within the data and improved model 
performance. 

There are different hyperparameters to tune to achieve the best 
model version possible for any ML task. It is typical to select hyper-
parameters by measuring the performance on held out data. Cross- 
validation is a hold-out scheme that makes efficient use of the training 
data, which is imperative for training models on smaller datasets such as 
this one. For hyperparameter tuning, we searched exhaustively over a 
grid of hyperparameter values for each type of model to find the best 
combination. We used a train/validation/test cross-validation scheme 
that allows both model selection and estimation of generalization per-
formance. Specifically, the data were split into five folds with three folds 
always used for training, one fold for validation, and one fold for testing. 
For each of the 20 distinct ways to split the folds into train, validation, 
and test sets, and each hyperparameter setting, the model was trained on 
the train folds and evaluated on the validation fold, resulting in 20 
validations scores. These scores are averaged to assign an overall score, 
and then compared against all other versions of the model to decide on 

Fig. 2. Spectral similarity within a sample class. VNIR spectra of HOW/EUC/DIO meteorites from the RELAB training set data, normalized to 0.70 μm. All the spectra 
have the same general shape, resulting from variable amounts of pyroxene group minerals, which have bands ca. 1 and 2 μm. 
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the best hyperparameters. 
Once the top hyperparameter values were selected for each model, 

an overall score was calculated for each model using the test folds. 
Several evaluation metrics could have been used here, such as balanced 
accuracy or F1 score, to deal better with problems involving unbalanced 
datasets. Although those might be pursued in our future work, for the 
current project we chose to follow the principle of Occam’s razor. Thus, 
the metric used was simply the percentage of accurate predictions by the 
model, either for the cross-validated data (internal accuracy of the 
model predicting other spectra in the same model – i.e., “seen” data) or 
test or validation data, which are unseen by the model during training. 
To express this in equation form: 

model accuracy =
#correct predictions
#total predictions

.

For each of the five possible test folds, the model was trained on the 
remaining four folds using the best hyperparameters from the cross- 
validation procedure, and then model accuracy was evaluated using 
the test fold and assigned a test set score. 

At the end, the average of the five test scores were calculated and 
treated as the test score for that model. The confusion matrices seen in 
the results section of this paper show the predictions for all of the 
samples from the combined test folds, where, for each sample the pre-
diction is made using the model trained on the four other folds. 

4. Results 

4.1. Meteorite classification on the basis of spectroscopy 

The existing, venerable meteorite classification system is based on a 
combination of mineralogy, grain size, and texture. In contrast, the 
proposed meteorite/asteroid classification is based on spectroscopy, 
which may only be partially sensitive to these variables. To a large 
extent, features in the 0.35–2.5 μm wavelength region arise from crystal 
field transitions between oxygen, iron, and other transition metals, 
though the positions of the bands vary with mineralogy. Grain size 
generally affects peak intensity rather than position. Thus composition 
has the biggest influence on spectral properties, with mineralogy also 
being important and effects of grain size being second order. As a result, 
meteorite classes with identical mineralogies but difference grains sizes 
may be spectrally difficult to distinguish on the basis of shape alone 
because they have all the same peaks, albeit with possibly different in-
tensities as a function of abundance. Classes distinguished only by 
textural variations will also be spectrally inseparable. 

Therefore, it was necessary to group some of the 20 meteorite classes 
before building a robust classifier. Groups were created using knowledge 
about the mineralogy and petrology of each meteorite class as well as 
inspection of the data (e.g., Table 1). Similar mineralogies were grouped 
together, as were spectra with similar appearance (Fig. 2 and Fig. S1). 
For example, the parent body for all three classes of HED (howardite- 
eucrite-diogenite) meteorites is believed to be the asteroid (4) Vesta, 
which is differentiated and has a basaltic crust from which these classes 
were sampled. All three groups contain varying amounts of plagioclase 
feldspar and Fe-rich pyroxenes. Reflectance spectra arising from Fe in 
the pyroxenes gives rise to characteristic bands at 1 and 2 μm, but the 
intensities and wavelength of those absorptions vary with the amounts 
and types of pyroxenes present (Fig. 2). The overall shape of the spectra 
is similar, and distinctive enough to be easily recognizable by the ML 
algorithms. Spectra of the other groups, provided in Fig. S1 and Data 
S1, all display similarly unique signatures in each group. Meteorite class 
groupings, their characteristics, and the resultant eight combined groups 
are given in Table 1. 

Using the eight groups and 1422 meteorite spectra from the Reflec-
tance Experiment Laboratory at Brown University (RELAB), four clas-
sification algorithms were then compared: KFDA, LR, QDA, and SVM as 
above. Models were trained on 60% of the data and validated using 

cross-validation on 20% of the data; the remaining 20% were used for 
test data. Classification accuracies on validation data using those four 
models were 92.0%, 90.1%, 88.4%, and 92.0, respectively (Fig. 3). 

4.2. Robustness of meteorite classification 

Because the classification will be applied to a completely different 
type of data (i.e., from asteroids), it is desirable to test the putative 
meteorite classifier on unknown data. For this purpose, we used a suite 
of 606 meteorite spectra collected in the laboratory of Dr. Edward 
Cloutis at the University of Winnipeg (Data S2). All four algorithms 
were used to predict those data, with accuracies of 91.2% for KFDA, 
91.8% for LR, 85.3% for QDA, and 90.4% for SVM (Fig. 4). So even 
though the training and test data here come from completely different 
instruments and analytical conditions, the meteorite groups can still be 
predicted with >85% accuracy. This result lends confidence to the 
capability of the RELAB-based model to predict spectral data from other 
sources such as those from asteroids. By comparing Winnipeg sample 
results with those from validation on the RELAB set, it was concluded 
that the LR models generally performed the best overall, and should thus 
be used as a standard for asteroid prediction. However, we continued to 
test SVM and KFDA models to see if there would be variations when they 
were used to predict asteroids. 

4.3. Prediction of asteroids into groups based on meteorites 

Models built using the top three classification models (SVM, LR, and 
KFDA) were applied to the asteroid data set and the percentages of as-
teroids in each of the eight categories were calculated. To put the results 
in context, they can be compared to meteorite populations. Meteorite 
falls reported in the Meteoritical Bulletin were tabulated for each cate-
gory of meteorites used in this study (as of July 2021), representing 
64,647 meteorites. Relative percentages in each of our eight groups 
were calculated. The distribution among types is qualitatively similar to 
the meteorite classes represented in our RELAB-based training set data 
(Fig. 5). For example, the largest percentage of falls is classified as L/H/ 
LL/URE and that is also the largest class in the asteroids. 

If meteorites were to represent the distribution of different types of 
material in the asteroid belt, then meteorite abundances in each of our 
eight meteorite groups should roughly match the distribution of asteroid 
types predicted by our classification models (SVM, LR, and KFDA). Fig. 5 
shows that this is a good approximation despite differences between the 
populations of meteorites delivered to Earth and the near-Earth and 
Main belt populations of asteroids, as well as their effectiveness in 
delivering material to Earth. There is no reason to expect a direct cor-
respondence between the asteroid distribution results and the constit-
uency of the falls or the RELAB data sets; in many cases, the latter either 
over- or under-represents a class. Thus the numbers of samples in our 
training sets do not appear to be biasing the classification outcomes. 
However, the major conclusion from these results is that the L/H/LL/ 
URE group is by far the most abundant in all three asteroid prediction 
models and in falls and RELAB data as well. 

A simple html file to classify an unknown asteroid is available from 
the authors. 

5. Discussion 

5.1. Choice of model 

Because the asteroid data are unlabeled (i.e., the true composition is 
largely unknown) and the test results are fairly comparable, there is no 
obvious criterion for choosing the final model for assigning asteroid data 
to one of our eight groups. However, the Excel sheet Data S3 shows that 
the different algorithms do produce subtly variable predictions, which is 
unsurprising because all the tested classifiers are distinct. 

The preferred model was therefore chosen by use of consensus 
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(Fig. 6) by comparing predictions from KFDA normalized at 1.45 μm, 
SVM at 1.40 μm, LR at 0.70 μm, and QDA at 0.95 μm. Of the 605 as-
teroids classified, 315 asteroids were classified identically by all four 
methods, 157 had one outlier, 121 had two identical groups, and 12 
asteroids were classified differently by all four models. In all, there were 
29 objects with a unique (i.e., outlier) LR classification, 147 for QDA, 52 
for SVM, and 157 for KFDA (values under Y labels in Fig. 5), so the LR 
classification represented consensus most frequently, and thus was 
chosen as the final classification. 

Objects that were harder for the models to predict resulted in all 
models producing different results or a split opinion. However, such 
objects were generally asteroids for which it is believed that there are no 
representatives in the terrestrial meteorite classes. This is an acknowl-
edged weakness of the method used in this study, for which there can be 
no remedy until additional meteorites can be measured. Moreover, 
many of the asteroids with multiple classifications do not have coverage 
of the range used by our algorithms, which likely confounds definitive 
classifications. 

5.2. Robustness of asteroid classification 

Because this study creates an asteroid classification using labeled 
meteorite data, model accuracy is well-constrained. However, model 

robustness can also be assessed using two lines of thought: independent 
knowledge of asteroids and comparison to the existing Bus system. 
Table 2 compares the presumed meteorite class (see references below), 
the Bus-DeMeo class, and classifications based on the four models 
developed in this study. Asteroid (6) Hebe, which was not used in the 
training or test data, is also predicted for this table. It is apparent that 
each of the ML models has a very different process for arriving at a given 
classification but that there is remarkable concurrence. 

In most cases seen in Table 2, the models are unanimous is predicting 
an appropriate composition based on other knowledge of those objects. 
All of the models agree that Vesta has an HED surface, which is inde-
pendently known on the basis of Dawn observations (McSween et al., 
2013). Angelina, Hungaria, and Eger have been proposed to be similar to 
enstatite-dominated aubrites (e.g., Clark et al., 2004) because of their 
extremely high albedos and an absorption band shortwards of 0.55 μm 
that is characteristic of oldhamite. These three objects are similar to 
enstatite chondrites, which have much lower albedos than aubrites but 
similar spectral shapes. Fortuna has an absorption feature at 0.7 μm that 
is characteristic of CM2 chondrites (Burbine, 1998). Itokawa is known to 
have an LL chondrite surface, also due to analyses of the returned sample 
(Nakamura et al., 2011). Apophis has an interpreted composition from 
its absorption bands similar to LL chondrites (Reddy et al., 2018). 

For two of the objects where there are no returned samples, our 

Fig. 3. Validation set accuracy for RELAB meteorite spectra. Confusion matrix showing accuracy of the meteorite classifiers for each of the four techniques tested 
using the optimal wavelength for normalization of each. The left side labels are the eight different meteorite groups, each with its own distinct spectral signatures. 
The bottom row indicates the groups to which each spectrum was assigned by the model. A value of 1.0 indicates a perfect match between the model and reality, 
while a zero value indicates complete mismatch. All models perform comparably except QDA, which has slightly poorer test accuracy. 
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results lend insights into speculations about their surfaces. Psyche was 
once thought to have an iron-dominated composition due to its rela-
tively featureless spectrum and its high radar albedo (e.g., Matter et al., 
2013), but recent work acknowledges that meteoritic analogs might 
span a range from iron meteorites to pallasites, mesosiderites, CB 
chondrites, and enstatite chondrites (Elkins-Tanton et al., 2020). For 
Psyche, our classifiers are also somewhat equivocal, but the suggested 
meteorite groups are also similar. The composition of Hebe has been 
interpreted from its absorption bands to be similar to H chondrites and 
IIE iron meteorites (Gaffey and Gilbert, 1998), as predicted by our LR 
and KFDA models, respectively. 

These data from Hebe affirm the choice of LR as the preferred clas-
sifier from among the four models tested. LR gives reasonable and 
believable results for all the objects for which independent information 
is available. It is striking that the new meteorite-based algorithm does 
correspond roughly to the Bus-DeMeo system (Table S3). For example, a 
majority of the Q types in the Bus-DeMeo system are L/H/LL/URE in the 
new classification, as are all but a handful of the S class asteroids. These 
results make sense because these meteorites all are composed of mix-
tures of olivine and pyroxene plus opaques. Moreover, all but one of the 
27 Bus-DeMeo V asteroids are classed with HED’s, and 18 of the 21 D 
types are grouped with IAB/IIAB/D. 

A key difference between our approach and those of others is the use 
of labeled rather than unlabeled data. Labeled data provide the advan-
tage of classification with known uncertainty, while unlabeled data are 
very difficult to ground-truth. Prior classifiers using unlabeled asteroid 
data use varied techniques for classification. For example, the venerable 
Bus-DeMeo taxonomy primarily classifies objects on the presence or 
absence of absorption bands and the shape and strength of the bands. 
The Bus-DeMeo taxonomy groups objects into (currently) 25 different 
asteroid classes, which is far larger than the eight classes developed 
here. However, use of the Bus-DeMeo classification frequently requires 
naked eye assessments, and thus may produce different answers based 
on the user. The DeMeo and Carry (2014) compositional mapping of the 
asteroid belt grouped objects into only 12 separate classes due to 
grouping subtypes (e.g., Cb, Ch, Sq, Sr) into their primary asteroid class, 
which recognizes that the Bus-DeMeo taxonomy is not grouping all 
bodies just according to mineralogy. For example, particle size can 
potentially affect an object’s Bus-DeMeo classification by reddening the 
spectrum or changing the strengths of absorption bands. 

Several other recent papers have developed matching algorithms and 
used machine learning methods for classification of asteroids using the 
growing libraries of asteroid spectra. Popescu et al. (2012) created a tool 
using principal component analysis and G-mode clustering to compare 

Fig. 4. Test accuracy of proposed classification. Confusion matrix showing prediction accuracy from application of the RELAB meteorite spectral models to pre-
diction of meteorite class using data from a different instrument at the University of Winnipeg. There were no acapulcoites or lodranites in the Winnipeg data. 
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spectral libraries with asteroid spectra. Oszkiewicz et al. (2014) used a 
Bayes Naïve Classifier to search for V-type objects, ackowledging that 
their method will benefit from a larger data set. Their recent paper 
Oszkiewicz et al. (2023) identified basaltic asteroids observed by the 
Gaia space mission to used gradient boosting, support vector machines 
and multilayer perceptrons. Klimczak et al. (2021) has recently broad-
ened their approach to include logistic regression (see also Klimczak 
et al., 2022). Penttilä et al. (2021, 2022) apply artificial neural networks 
and deep learning techniques to asteroid classification, linking their 
results to the Bus-DeMeo classification as we have done in this paper. 
Colazo et al. (2022) used the clustering tool called fuzzy C-means to 
propose a zero-phase angle asteroid taxonomy. Mahlke et al. (2022) uses 
a common factor analyzers model to build a cluster-based taxonomy 
from spectrometrey and albedo. These studies represent examples of the 
many machine-learning approaches being applied with enthusiasm to 
the task of asteroid taxonomy, enabled by the rapid growth of obser-
vational databases for asteroids. At some point, it will be useful to 
combine these unlabeled approaches to the labeled ones to allow 
compositional and mineralogical information to be better related to 
proposed unlabeled classes. 

5.3. Limitations and considerations 

The approach used in this study has limitations associated with both 
the meteorite data used and the asteroid data. For the former, the 
constitution of the RELAB data set used for training and potential 
modification of meteorites by shock must be considered. For the latter, 
many of the systematic effects are described in detail by Binzel et al. 
(2019), and need only be discussed briefly here. 

5.3.1. Dependence of models on training data 
Prior classification studies linking asteroids to meteorites using 

spectra are based on limited data (e.g., Korda et al., 2023); our study 
required nearly a decade as we identified gaps in the existing meteorite 
spectral libraries, requested samples to fill them, and then prepared 
them for spectroscopy and ran them. However, we recognize that the 
constitution of our training set is a key limitation of this project, just as it 
is a limitation of most any machine learning method. It is hoped that 
subsequent workers will continue to expand the library of meteorite 
spectra as new meteorites are discovered to grow the potential training 

Fig. 5. Classification of asteroids and meteorites. Distribution of asteroid 
classes using the classifier trained on meteorites. (top) Sample distribution 
among the eight meteorite-based spectral classes as predicted by SVM, LR, and 
KFDA models compared against the population of meteorite types in falls and in 
our RELAB-based training set data. (bottom) Pie chart of percentages of aster-
oids in each of the eight classes from the LR model. 

Fig. 6. Consensus plot for asteroid data. Samples numbers are arbitrary, but represent the 605 asteroid spectra studied. Diamonds on each line represent the asteroids 
for which the given classification results do not match those of a majority of the other objects. Because there are only 29 objects with a unique (e.g., outlier) LR 
classification versus 147 for QDA, 52 for SVM, and 157 for KFDA, the LR model is chosen as the most generally applicable algorithm to use for identifying 
asteroid class. 
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set and avoid the bias inherent in existing data. 
It is also apparent that some asteroids classes may not be represented 

in meteorite collections; for example, “exact” carbonaceous chondritic 
analogs for B-types have been difficult to determine (e.g., Clark et al., 
2010). However, it is possible that with dedicated effort, mechanical 
mixtures of minerals could be created to mimic rare meteorite types that 
are lacking or poorly represented in existing meteorite collections and 
thus in spectral libraries. As an example of this approach, Korda et al. 
(2023) mined mineral mixtures from RELAB (many of which were 
created by our group) and other databases to develop their mineral- 
based classification. The accessibility of new natural and mixture- 
based analog meteorite spectra and future additions to such databases 
should boost the development of new approaches leveraging them, 
providing an alternative to classifications using only unlabeled asteroid 
data (see below). Our goal here is not to present a penultimate 
meteorite-based classification, but rather to lay the groundwork for 
additional work using our approach as new data become available. 

5.3.2. Shocked phases in meteorites 
A related issue deals with the potential effects of shock and impact 

processes on our meteorites and, consequently, on their spectra. Effects 
of shock on meteorites and their mineral constituents are well- 
understood (Bischoff and Stöffler, 1992) and their spectral signatures 
have been well-studied (Adams et al., 1979; Bruckenthal and Pieters, 
1984; Johnson and Hörz, 2003; Treiman et al., 2007; Roberts et al., 
2019). For example, it is well-established that plagioclase is the first 
mineral phase to be affected by shock (becoming maskelynite); how-
ever, it has little influence on VNIR spectra due to its low iron content. 
Kohout et al. (2020) conducted experiments on a sample of the Che-
lyabinsk LL5 meteorite and found shock darkening due to the formation 
of fine troilite-metal eutectic grains. The effect on the VNIR spectral 
region was to change the magnitude but not the spectra features 
observed. The same result was observed by Friedlander et al. (2015), 
who also report increases in site disorder with shock pressure and 
varying effects depending on site occupancy. As such, it is difficult to 
generalize the effects of shock on meteorite spectra. But it is also 
reasonable to expect that asteroid surfaces themselves will show evi-
dence of shock. In this sense, our terrestrial suites of meteorites may be 
excellent analogs for asteroid surfaces, especially for parent bodies of 
ordinary, enstatites, carbonaceous chondrites, basaltic achondrites and 
ureilites (Bischoff and Stöffler, 1992), in which varying stages of shock 
metamorphism are observed. 

5.3.3. Effects of weathering on classification 
Weathering is known to have an effect on both meteorite (from in-

teractions with terrestrial conditions) and asteroid spectra (from space 
weathering). For example, terrestrial weathering of meteorites causes a 
concave shoulder absorption around 0.5 μm due mostly to iron hy-
droxides and a band at 0.9 μm, often overlapped with a pyroxene band 
(Takahiro Hiroi, personal communication, 2021). In contrast, space 
weathering tends to change any shape into a smoother, slightly convex 
shape (Hiroi et al., 2006). However, variations in this small, mostly-UV 
region of the affected wavelengths will only affect a few input features, 

and thus should not influence the overall shapes of the curves that form 
the basis for the algorithms. This is borne out by the concurrence be-
tween the new meteorite-based classifier and prior asteroid-based Bus- 
DeMeo classifier, which suggests that terrestrial weathering effects do 
not overly influence asteroid classification outcomes. In other words, 
features arising from primary mineralogy (e.g., phases with abundances 
greater than ~5% such as glass, olivine, and pyroxene) have a far greater 
effect on spectral shape than minor variations due to weathering. 

Weathering may also lead to albedo variations, which should be 
removed by normalization. Slope differences will not greatly change the 
“peaks” and valleys” in the data, which are the main features that are 
found by the ML algorithms. In other words, the overall shape of the 
features from the mineral phases present is used by the algorithms, not 
those subtle variations. This allows the classifiers to “see through” the 
albedo and slope differences. Finally, models used for this study are 
regularized LR and SVMs with only 30 features and over a thousand 
training samples. This situation is not prone to overfitting (Hastie et al., 
2009). Therefore models should be robust to small changes in input 
features such as those induced by weathering. 

5.3.4. Other considerations 
Any asteroid classification will be limited by the spatial scale of 

observations relative to the heterogeneity of the asteroid’s surface. For 
example, DellaGiustina et al. (2020) showed that asteroid Bennu, which 
is a primitive body, has exogenic basaltic boulders on its surface. 
However, the abundances of these basaltic boulders are much too small 
to noticeably affect Earth-based telescopic spectra of Bennu. These 
scenarios cannot be easily modeled by any classification based on 
remote observations that sample at large scales, and will lead to classi-
fication based on the mixture of the exogenic material with that of the 
surface if the exogenic material has a high enough abundance to affect 
the spectral properties of the asteroid. 

Phase angle effects are discussed at length in Binzel et al. (2019). 
They compare multiple observation of several NEAs ((433) Eros, (1036) 
Ganymede, (1627) Ivar, and (4179) Toutatis) and conclude that “there is 
no single phase correction that is applicable to all objects; the value may 
be dependent on the individual object.” For that reason, they employ 
only spectra of objects as measured. This study follows that precedent. 
However, we note that the phase angle used at RELAB to obtain the 
meteorite spectra in this study is 30◦, which is approximately in the 
middle of the range for the NEAs (10 to 50◦). Phase angles for the 
observed main belt asteroids would tend to be smaller, but the 30◦ angle 
used for the meteorite measurements would be likely to be comparable. 

Binzel et al. (2019) also raise the issue of the effects of thermal tails. 
They result when really dark objects in the NEA population are hot 
enough so that their long wavelength part of their spectrum can be 
noticeably affected by their blackbody curve. Binzel et al. (2019) model 
this effect and apply their thermal correction to the NEA data that were 
in turn used in this study. 

5.4. Relationship between asteroid composition and location 

A different approach to validating the results of our meteorite- 

Table 2 
Comparison of known or presumed asteroid types with Bus-DeMeo classes and predictions from the four ML models in this study.  

Object Known/ presumed BDM SVM QDA LR KFDA 

(4) Vesta HED V HED HED HED HED 
(3103) Eger Aubrite Xe EH/EL/AUB EH/EL/AUB H/EL/AUB H/EL/AUB 
(64) Angelina Aubrite Xe EH/EL/AUB EH/EL/AUB EH/EL/AUB EH/EL/AUB 
(434) Hungaria Aubrite Xe EH/EL/AUB CM/C2/CR EH/EL/AUB EH/EL/AUB 
(19) Fortuna CM2 Ch CM/C2/CR CM/C2/CR CM/C2/CR CM/C2/CR 
(25143) Itokawa LL Sq L/H/LL/URE L/H/LL/URE L/H/LL/URE L/H/LL/URE 
(99942) Apophis LL Sq L/H/LL/URE L/H/LL/URE L/H/LL/URE L/H/LL/URE 
(16) Psyche EH/EL-CH/CB-IAB/IIAB Xk IAB/IIAB CM/C2/CR EH/EL/AUB EH/EL/AUB 
(6) Hebe H S ACA/LOD HOW/EUC/DIO L/H/LL/URE IAB/IIAB  
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trained classifiers is to consider whether the spatial distribution of 
groups makes sense in the context of what is known about Solar System 
formation. Fig. 7 shows the average albedo and semi-major axis lengths 
(excluding Mars-crossing and near-Earth objects) for asteroids in each 
classification. 

Albedo is expected to vary with the Fe content of the various objects. 
HEDs should have the highest albedo because their mineralogies are 
dominated by Fe-free plagioclase. For example, diogenites contain most 
Mg-rich (rather than Fe-rich) orthopyroxenes, with small amounts of 
olivine and plagioclases, and their light color imparts a high albedo. The 
CK/BRAC-class asteroids contain high amounts of Fe-poor (Mg-rich) 
olivine, causing them to appear brighter. In the middle range of albedos, 
the metal contents of acapulcoites and lodranites reduce their albedos. 

At the other end of the albedo range are EH/EL and ordinary chon-
drites, which tend to contain higher-Fe enstatite and more opaque 
phases, either in silicates or as iron metal. CO/CV objects should also be 
relatively dark because they are mainly opaque phases. The IAB/IIAB 
iron class here, also with low albedos, likely includes D-type asteroids, 
which tend to be organic-rich and as dark as irons. Finally, asteroids that 
are classified as aubrites/featureless tend to be relatively dark, which 
implies that are most similar to carbonaceous chondrites and not 
aubrites. 

To evaluate the spatial distribution of the classified asteroids, the 
average semi-major axis for each object is shown in order of length 
(Fig. 7). The abundances of different asteroid types are known to vary 
with distance from the Sun (Gradie and Tedesco, 1982; DeMeo and 
Carry, 2014). Near-Earth asteroids and those crossing Mars are removed 

from this data set, because their orbits have likely been perturbed. This 
graphic highlights a potential limitation of the current classification, 
which is that the relatively featureless and red spectra of the iron (IAB/ 
IIAB) asteroid classes should be quite similar to those of the organic-rich 
and also featureless D-type asteroids found in the outer part of the 
asteroid belt. The elevated average semi-major axis lengths of the IAB/ 
IIAB class strongly suggests that this class has ample representation from 
D-type asteroids, which are unfortunately not represented in our spec-
tral library because that material has trouble surviving passage through 
the Earth’s atmosphere. For example, asteroid (279) Thule is a D-type at 
~4 AU that is classified as IAB/IIAB. Thus the IAB/IIAB class should 
probably be considered as the IAB/IIAB/D class. This serves as a 
reminder that any classification is only as good as the input (training) 
data. 

6. Implications and future work 

There are effectively three approaches to understanding asteroid 
provenance. The first utilizes the approaches laid out in the Asteroids IV 
volume (e.g., Reddy et al., 2015), in which understanding asteroid 
composition depends on comparisons to laboratory measurements of 
mafic minerals, which reveal characteristics of olivine and pyroxene 
minerals that occur in many types of meteorites and asteroids. The 
second (used here) uses meteorite spectra without assumptions about 
mineralogy, but simply as representatives of their types, and builds a 
classifier that is then directly applied to asteroids. The third classifies 
asteroids based solely on other asteroid spectra, without regard for their 
meteorite analogs. Each approach has advantages and disadvantages, 
and ultimately, the best taxonomy may arise from some combination of 
them. 

Recent work by DeMeo et al. (2022) moves in this direction by 
summarizing spectral similarities between meteorites and asteroids 
using spectral features (e.g., absorption bands and curvature of spectra). 
They find connections between ordinary chondrites and S-complex and 
Q-type asteroids; pristine CM carbonaceous chondrites with Ch-type 
asteroids; heated CMs with C-type asteroids; HED meteorites with V- 
types; enstatite chondrites with Xc-type asteroids; CV chondrites with K- 
type asteroids; and brachinites, pallasites, and R chondrites with olivine 
dominated A-type asteroids. Many of these associations are seen in our 
data. We find that our H/L/LL/ureilite group tends to match with S- 
complex and Q-type bodies, our V-type group with HEDs, our Xc group 
(and Xe group) tends to match with enstatite chondrites. 

The planetary science community has become accustomed to the 
current BDM paradigm for asteroid taxonomy, which was pioneering for 
its time. In recent years, as aptly noted by Penttilä et al. (2021), there is 
currently a burgeoning of possible classification techniques, with novel 
techniques applied following each latest introduction of additional 
asteroid data. Most use unlabeled classifications or those based on labels 
from the Bus-DeMeo system (see Section 5.3 above). This paper proposes 
a fundamentally different approach to the problem because it is based on 
the existing meteorite classification system, which is based on known 
compositions and mineralogies. Thus, the classifier proposed here is 
firmly grounded in physical knowledge of the training samples. 

Three lines of evidence support the usefulness of the proposed new 
classifier. Models concur in predicting an appropriate composition based 
on other knowledge of those objects, the results are mostly consistent 
with the existing Bus-DeMeo classification, and the predicted asteroid 
groups make sense in terms of our understanding of the distribution of 
material in the Solar System. Moreover the proposed classification sys-
tem is fully automatic and does not require any human interaction for 
classification. The groups are rooted in mineralogy, providing a deeper 
understanding of the potential mineralogical compositions of asteroids. 
The proposed classification uses the shape of the spectra and is not 
dependent on minor variations such as those introduced by terrestrial 
(on the meteorites) or space (on the asteroid) weathering. Finally, it 
relates meteorites to their potential parent bodies. 

Fig. 7. Ranked albedo and semi-major axes lengths of classes predicted by this 
study. Average and standard deviation (represented by error bars) values of 
albedo and semi-major axis lengths (excluding Mars-crossing and near-Earth 
objects) in the new classification. 
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Looking to the future, machine learning methods are sure to 
improve, but a fundamental limitation of this approach remains the 
paucity of spectroscopic data on different meteorite types, especially 
specific groups such as acapulcoites and CB chondrites. As new mete-
orites are found and those spectral libraries grow, this analysis can easily 
be redone to update it. This paper lays a firm foundation on which 
subsequent taxonomic studies can build. 
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Moreau, J.G., Berzin, S.V., Wasiljeff, J., Danilenko, I.A., Zamyatin, D.A., 

M.D. Dyar et al.                                                                                                                                                                                                                                 

https://doi.org/10.1016/j.icarus.2023.115718
https://doi.org/10.1016/j.icarus.2023.115718
http://refhub.elsevier.com/S0019-1035(23)00295-6/rf0005
http://refhub.elsevier.com/S0019-1035(23)00295-6/rf0005
http://refhub.elsevier.com/S0019-1035(23)00295-6/rf0005
http://refhub.elsevier.com/S0019-1035(23)00295-6/rf0010
https://doi.org/10.1016/j.icarus.2018.12.035
https://doi.org/10.1127/ejm/4/4/0707
http://refhub.elsevier.com/S0019-1035(23)00295-6/rf0030
http://refhub.elsevier.com/S0019-1035(23)00295-6/rf0030
http://refhub.elsevier.com/S0019-1035(23)00295-6/rf0030
https://doi.org/10.1111/j.1945-5100.1998.tb01630.x
https://doi.org/10.1111/j.1945-5100.1998.tb01630.x
http://refhub.elsevier.com/S0019-1035(23)00295-6/rf0040
http://refhub.elsevier.com/S0019-1035(23)00295-6/rf0040
http://refhub.elsevier.com/S0019-1035(23)00295-6/rf0050
http://refhub.elsevier.com/S0019-1035(23)00295-6/rf0050
https://doi.org/10.1006/icar.2002.6856
https://doi.org/10.1006/icar.2002.6856
https://doi.org/10.1006/icar.2002.6857
https://doi.org/10.1006/icar.2002.6857
http://refhub.elsevier.com/S0019-1035(23)00295-6/rf0065
http://refhub.elsevier.com/S0019-1035(23)00295-6/rf0065
http://refhub.elsevier.com/S0019-1035(23)00295-6/rf0065
http://refhub.elsevier.com/S0019-1035(23)00295-6/rf0065
https://doi.org/10.1111/j.1945-5100.1996.tb02107.x
https://doi.org/10.1016/0019-1035(75)90191-8
https://doi.org/10.1029/2003JE002200
https://doi.org/10.1029/2009JE003478
https://doi.org/10.1029/2009JE003478
https://doi.org/10.1016/j.jmr.2006.07.013
https://doi.org/10.1051/0004-6361/202243428
https://doi.org/10.1126/science.abc3660
https://doi.org/10.1038/nature12908
https://doi.org/10.1016/j.icarus.2009.02.005
https://doi.org/10.1016/j.icarus.2009.02.005
https://doi.org/10.1016/j.icarus.2022.114971
https://doi.org/10.1016/j.icarus.2022.114971
http://refhub.elsevier.com/S0019-1035(23)00295-6/rf0125
http://refhub.elsevier.com/S0019-1035(23)00295-6/rf0125
https://doi.org/10.1029/2019JE006296
https://doi.org/10.1002/2014JE004638
https://doi.org/10.1111/j.1945-5100.1998.tb01312.x
https://doi.org/10.1126/science.216.4553.14
https://doi.org/10.1016/j.icarus.2018.04.012
https://hastie.su.domains/ElemStatLearn/
https://doi.org/10.1038/nature05073
https://doi.org/10.1029/2003JE002127
https://doi.org/10.1029/2003JE002127
https://doi.org/10.1016/0168-583X(87)90298-9
https://doi.org/10.1016/0168-583X(87)90298-9
https://doi.org/10.1029/94JE02141
https://doi.org/10.3389/fspas.2021.767885
https://doi.org/10.3389/fspas.2021.767885
https://doi.org/10.1051/0004-6361/202243889
https://doi.org/10.1051/0004-6361/202243889


Icarus 406 (2023) 115718

13

Muftakhetdinova, R.F., Heikkila, M., 2020. Experimental constraints on the ordinary 
chondrite shock darkening caused by asteroid collisions. Astron. Astrophys. 639, 
A146. https://doi.org/10.1051/0004-6361/202037593. 

Korda, D., Penttilä, A., Klami, A., Kohout, T., 2023. Neural network for determining an 
asteroid mineral composition from reflectance spectra. Astron. Astrophys. 669, 
A101. https://doi.org/10.1051/0004-6361/202243886. 

Larson, H.P., Fink, U., 1975. Infrared spectral observations of asteroid 4 Vesta. Icarus 26 
(4), 420–427. https://doi.org/10.1016/0019-1035(75)90109-8. 

Lauretta, D.S., Balram-Knutson, S.S., Beshore, E., Boynton, W.V., d’Aubigny, C.D., 
DellaGiustina, D.N., Enos, H.L., Goklish, D.R., Hergenrother, C.W., Howell, E.S., 
Bennett, C.A., Morton, E.T., Nolan, M.C., Rizk, B., Roper, H.L., Bartels, A.E., Bos, B. 
J., Dworkin, J.P., Highsmith, D.E., Lorenz, D.A., Lim, L.F., Mink, R., Moreau, M.C., 
Nuth, J.A., Reuther, D.C., Simon, A.A., Bierhaus, E.B., Bryan, B.H., Ballouz, R., 
Barnouin, O.S., Binzel, R.P., Bottke, W.F., Hamilton, V.E., Walsh, K.J., Chesley, S.R., 
Christensen, P.R., Clark, B.E., Connolly, H.C., Crombie, D.J., Daly, M.G., Energy, J. 
P., McCoy, T.J., McMahon, J.W., Scheeres, D.J., Messenger, S., Nakamura- 
Messenger, K., Righter, K., Sandford, S.A., 2017. OSIRIS-REx: sample return from 
asteroid (101955) Bennu. Space Sci. Rev. 212, 925–984. https://doi.org/10.1007/ 
s11214-017-0405-1. 

Levinson, H.F., Olkin, C.B., Noll, K.S., Marchi, S., Bell, J., Bierhaus, E., Binzel, R., 
Bottke, W., Britt, D., Brown, M., Buie, M., Christensen, P., Emery, J., Grundy, W., 
Hamilton, V.E., Howett, C., Mottola, S., Patzold, M., Reuter, D., Spencer, J., 
Statler, T.S., Stern, S.A., Sunshine, J., Weaver, H., Wong, I., 2021. Lucy mission to 
the Trojan asteroids: science goals. Planet. Sci. J. 2, 171. https://doi.org/10.3847/ 
PSJ/abf840. 

Li, Z., Zhan, D.J., Wang, J.J., Huang, J., Xu, Q.S., Zhang, Z.M., Zheng, Y.B., Liang, Y.Z., 
Wang, H., 2013. Morphological weighted penalized least squares for background 
correction. Analyst 138, 4483–4492. https://doi.org/10.1039/C3AN00743J. 

Mahlke, M., Carry, B., Mattei, P.-A., 2022. Asteroid taxonomy from cluster analysis of 
spectrometry and albedo. Astron. Astrophys. 665, A26. https://doi.org/10.1051/ 
0004-6361/202243587. 

Matter, A., Delbo, M., Carry, B., Ligori, S., 2013. Evidence of a metal-rich surface for the 
Asteroid (16) Psyche from interferometric observations in the thermal infrared. 
Icarus 226, 419–427. https://doi.org/10.1016/j.icarus.2013.06.004. 

McCord, T.B., Adams, J.B., Johnson, T.V., 1970. Asteroid Vesta: spectral reflectivity and 
compositional implications. Science 168, 1445–1447. https://doi.org/10.1126/ 
science.168.3938.1445. 

McCoy, T.J., Keil, K., Clayton, R.N., Mayeda, T.K., Bogard, D.D., Garrison, D.H., Wiel, R., 
1997. A petrologic and isotopic study of lodranites: evidence for early formation as 
partial melt residues from heterogeneous precursors. Geochim. Cosmochim. Acta 61, 
623–637. https://doi.org/10.1016/S0016-7037(96)00359-6. 

McSween Jr., H.Y., Binzel, R.P., De Sanctis, M.C., Ammannito, E., Prettyman, T.H., 
Beck, A.W., Reddy, V., Le Corre, L., Gaffey, M.J., McCord, T.B., Raymond, C.A., 
Russell, C.T., Dawn Science Team, 2013. Dawn; the Vesta-HED connection; and the 
geologic context for eucrites, diogenites, and howardites. Meteor. Planet. Sci. 48, 
2090–2104. https://doi.org/10.1111/maps.12108. 
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