UNIVERZITET U BEOGRADU MATEMATIČKI FAKULTET

Bojana Lj. Mihailović

NEKE KLASE GRAFOVA SA DATIM OGRANIČENJEM DRUGE SOPSTVENE VREDNOSTI

doktorska disertacija

Beograd, 2016

UNIVERSITY OF BELGRADE FACULTY OF MATHEMATICS

Bojana Lj. Mihailović

SOME CLASSES OF GRAPHS WITH GIVEN BOUND FOR SECOND LARGEST EIGENVALUE

Doctoral Dissertation

Belgrade, 2016

Mentor:

dr Zoran Radosavljević, redovni profesor Elektrotehničkog fakulteta u Beogradu u penziji

Članovi komisije:

dr Milan Dražić, vanredni profesor Matematičkog fakulteta u Beogradu

dr Zoran Stanić, vanredni profesor Matematičkog fakulteta u Beogradu

dr Marija Rašajski, vanredni profesor Elektrotehničkog fakulteta u Beogradu

Datum odbrane:

Rezime

Predmet ove disertacije pripada oblasti spektralne teorije grafova, mladoj grani matematičke kombinatorike, odnosno teorije grafova, koja u današnje vreme nalazi važne primene u mnogim poljima, kao što su hemija, fizika, računarstvo, telekomunikacije, sociologija, itd. kao i razne oblasti matematike. Spektralna teorija grafova dovodi u vezu osnovne osobine i strukturu grafa sa osobinama spektra njegovih matrica (matrice susedstva, Laplasove matrice itd.). U ovoj disertaciji reč je isključivo o spektru matrice susedstva grafa. Druga po veličini sopstvena vrednost matrice susedstva grafa (kraće, druga sopstvena vrednost grafa), kao i njeno rastojanje od najveće sopstvene vrednosti, od značaja su naročito za primenu spektralne teorije u računarstvu. Osobina grafa da mu posmatrana sopstvena vrednost ne prevazilazi dato ograničenje jeste nasledna osobina, pa su mnoga istraživanja o ovakvim ograničenjima išla u pravcu nalaženja maksimalnih dozvoljenih grafova ili nalaženja minimalnih zabranjenih grafova za tu osobinu.

Ova disertacija bavi se određivanjem nekih klasa grafova koje imaju dato ograničenje druge sopstvene vrednosti matrice susedstva grafa i u tom cilju razvija neke vrlo korisne instrumente. U metodološkom smislu istraživanja u ovoj disertaciji predstavljaju spregu primene algebarskog aparata i metoda spektralne teorije grafova i kombinatorog rezonovanja, dok je u pojedinim fazama korišćen i ekspertni sistem newGRAPH. Disertacija sadrži osam glava, koje su podeljene na delove.

Na početku se navode prethodni rezultati, a zatim se uvode i razvijaju novi i originalni elementi algebarsko-kombinatornog aparata koji ubrzava i olakšava dalji rad. Definišu se preslikavanja između određenih familija grafova, od kojih neka čuvaju znak izraza $\lambda_2 - 2$ i pomoću njih se opisuju i sistematizuju neki već poznati rezultati na nov način. Zatim se u potpunosti određuju svi maksimalni refleksivni triciklički kaktusi koji nisu RS-odlučivi i čije konture ne čine snop iz klasa R_1 i R_3 i daju parcijalni rezultati koji se tiču klase R_2 , uz primenu prethodno uvedenih preslikavanja (dosad su u potpunosti bili određeni samo oni iz preostale klase R_4 [40], [46]). Dalje se kompletno opisuju svi minimalni zabranjeni grafovi u klasi bicikličkih grafova sa mostom i svi minimalni zabranjeni grafovi u klasi R_3 - pristup koji kod refleksivnih grafova još nije bio korišćen. Zatim se određuje maksimalan broj kontura za RS-neodlučive refleksivne kaktuse za slučaj kad konture sadrže snop, a time i uopšte za RS-neodlučive refleksivne kaktuse, i opisuju tri klase maksimalnih refleksivnih RS-neodlučivih kaktusa koji sadrže snop kontura. Posle toga su uopšteni neki prethodni rezultati: iskazano je i dokazano uopštenje RS-teoreme (tzv. GRS-teorema) za bilo koje r, r > 0; uopštena su prethodno uvedena preslikavanja, dokazane su osobine uopštenja i dati različiti primeri klasa grafova sa osobinom $\lambda_2 \leq r$ (za r > 0). Na osnovu prethodnog, opisani su svi GRSneodlučivi maksimalni grafovi za osobinu $\lambda_2 \leq \sqrt{2}$ u klasi unicikličkih i multicikličkih kaktusa i svi GRS-neodlučivi maksimalni θ -grafovi za isto svojstvo, kao i sva GRSneodlučiva maksimalna stabla sa osobinom $\lambda_2 \leq \frac{\sqrt{5}+1}{2}$. Takođe je razmatrano ograničenje $\sqrt{3}$ (kao i u [28]) i opisani su sva stabla sa dijametrom 3 i dijametrom većim od 8, sa osobinom $\lambda_2 \leq \sqrt{3}$, kao i svi GRS-neodlučivi multiciklički kaktusi sa istom osobinom. Na kraju su uvedene i primenjene tzv. σ -modifikacije Smitovih stabala. Opisano je sedam σ -modifikacija i odgovarajućih ekstenzija i uočeno je njihovo pojavljivanje u (već poznatim) rezultatima u klasi multicikličkih refleksivnih kaktusa sa 4 konture. Primenom nekih ekstenzija na određene familije tricikličkih kaktusa na drugi način se došlo do rezultata u klasi multicikličkih refleksivnih kaktusa sa 4 konture [48].

Na kraju disertacije, u zaključku, ukazano je na moguće pravce daljih istraživanja.

Ključne reči: spektralna teorija grafova, druga sopstvena vrednost, nasledna grafovska osobina, maksimalni grafovi, minimalni zabranjeni grafovi, stabloliki grafovi (kaktusi), refleksivni grafovi

Naučna oblast: Matematika

Uža naučna oblast: Spektralna teorija grafova

UDK: 519.179 (043.3)

Abstract

The subject of this dissertation belongs to scientific field of spectral graph theory, a young branch of mathematical combinatorics, i.e. graph theory, which finds important applications in many areas, such as chemistry, physics, computer science, telecommunications, sociology, etc., and various fields of mathematics. Spectral graph theory connects basic properties and the structure of a graph with characteristics of the spectra of its matrices (adjacency matrix, Laplacian matrix, etc.). In this dissertation we only work with the adjacency matrix. The second largest eigenvalue of the adjacency matrix of a graph (or, simply, second largest eigenvalue of a graph), as well as its distance from the largest eigenvalue, are very important especially in applications of spectral graph theory in computer science. The property of a graph that one of its eigenvalues does not exceed some given value is a hereditary one; therefore, many of the investigations of this kind have been directed at finding the maximal allowed graphs, or minimal forbidden graphs for that property.

In this dissertation we determine some classes of graphs whose second largest eigenvalue does not exceed some given value, and, for that purpose, we develop some very useful tools. In methodological sense, investigations in this dissertation represent a combined approach consisting of application of the algebraic apparatus and methods of spectral graph theory and combinatorial reasoning, whilst at some stages the expert system *newGRAPH* has been used. The dissertation consists of eight chapters, each of which is divided into subchapters.

In the beginning, some important previous work is shown, and afterwards we present some original elements of the algebraic and combinatorial apparatus that speed up and simplify the further work. We define some mappings between certain families of graphs, some of which preserve the sign of the expression $\lambda_2 - 2$, and, using them, we describe and systematize some (already known) results in a new way. Further on we completely determine all maximal reflexive tricyclic cacti which are not RS-decidable and whose cycles do not form a bundle, from the classes R_1 and R_3 , and we give some partial results about the class R_2 , using previously induced mappings (until now only the graphs from the remaining class R_4 have been completely determined [40], [46]). Next, we completely describe all minimal forbidden graphs in the class of bicyclic graphs with a bridge, and all minimal forbidden graphs in the class R_3 - the approach that so far has never been used with reflexive graphs. Then we determine the maximal number of the cycles for RS-undecidable reflexive cacti whose cycles do form a bundle, and, therefore, generally for RS-undecidable reflexive cacti and we describe three classes of maximal reflexive RS-undecidable reflexive cacti that contain a bundle. Further on, some of the previous results are generalized: the generalized RS-theorem is stated and proved (so-called GRS-theorem) for any r, r > 0; previously induced mappings are generalized, their properties are proved and various examples of classes of graphs with the property $\lambda_2 \leq r$ (for r > 0) are given. Based on this, we describe all GRS-undecidable maximal graphs for the property $\lambda_2 \leq \sqrt{2}$ in the class of unicyclic and multicyclic graphs, and also all RS-undecidable maximal θ -graphs for this property as well as all GRS-undecidable maximal trees with the property $\lambda_2 \leq \frac{\sqrt{5}+1}{2}$. Furthermore, we investigate the limit $\sqrt{3}$ (as in [28]) and we describe all trees with the diameter 3 and the diameter larger than 8, with the property $\lambda_2 \leq \sqrt{3}$, as well as all GRSundecidable multicyclic cacti with the same property. Finally, we introduce and apply so-called σ -modifications of Smith trees. We describe seven σ -modifications and corresponding extensions, and we notice the appearance in (already known) results in the class of multicyclic reflexive cacti with 4 cycles. Applying some extensions to certain families of tricyclic cacti, we obtained the results in the class of multicyclic reflexive cacti with 4 cycles, using a different approach [48].

Finally, in the conclusion, we suggest some possible directions of further investigations.

Key words: spectral graph theory, second largest eigenvalue, hereditary graph property, maximal graphs, minimal forbidden graphs, treelike graphs (cacti), reflexive graphs

Scientific field: Mathematics

Narrow scientific field: Spectral graph theory

UDC: 519.179 (043.3)

Sadržaj

Uvod	1
1. Prethodni rezultati	4
1.1. Prethodni rezultati – razna ograničenja druge sopstvene vrednosti	4
1.2. Refleksivni kaktusi	6
1.2.1. Biciklički grafovi sa mostom	8
1.2.2. Kaktusi sa najmanje 4 konture	12
1.2.3.Triciklički kaktusi	17
1.2.4. Uniciklički refleksivni kaktusi, još neki biciklički kaktusi i θ-grafovi	18
2. Neka preslikavanja i znak $\lambda_2 - 2$	20
2.1. Preslikavanja α i β	20
2.2. Primena preslikavanja α i β na klasu bicikličkih grafova sa mostom	24
2.3. Preslikavanja ω , τ i φ	27
2.4. Primena preslikavanja φ i τ	32
3. Neke klase tricikličkih refleksivnih kaktusa	36
3.1. Prelivanje parova Smitovih stabala	36
3.2. Klasa R ₁	41
3.3. Klasa R ₂	60
3.4. Klasa <i>R</i> ₃	78
4. Minimalni zabranjeni grafovi za osobinu $\lambda_2 \leq 2$	88
4.1. Minimalni zabranjeni grafovi u klasi bicikličkih grafova sa mostom	88
4.1.1. Grafovi kod kojih je bar jedan beli čvor opterećen	89
4.1.2. Grafovi u kojima su opterećena bar dva crna čvora	94
4.1.3. Grafovi u kojima je opterećen najviše jedan crni čvor	96
4.2. Minimalni zabranjeni grafovi u klasi R_3	. 105

5. Maksimalan broj kontura u RS-neodlučivim refleksivnim kaktusima koji sa	drže snop
kontura	109
5.1. Minimalne komponente	109
5.2. Maksimalni broj kontura	114
5.3. Tri klase maksimalnih refleksivnih kaktusa koji sadrže snop kontura	115
6. Neka uopštenja	121
6.1. Uopštena RS teorema	121
6.2. Neka preslikavanja i njihova veza sa znakom izraza $\lambda_2 - r$	126
6.3. Primeri klasa grafova sa osobinom $\lambda_2 \leq r$	128
7. Još neke klase grafova sa datim ograničenjem druge sopstvene vrednosti	136
7.1. Neke klase grafova sa osobinom $\lambda_2 \leq \sqrt{2}$	136
7.1.1. Uniciklički kaktusi sa osobinom $\lambda_2 \leq \sqrt{2}$	137
7.1.2. Multiciklički kaktusi sa osobinom $\lambda_2 \leq \sqrt{2}$	141
7.1.3. θ -grafovi sa osobinom $\lambda_2 \leq \sqrt{2}$	142
7.2. Stabla sa osobinom $\lambda_2 \leq \frac{\sqrt{5}+1}{2}$	148
7.3. Neke klase grafova sa osobinom $\lambda_2 \le \sqrt{3}$	152
7.3.1. Neke klase stabala sa osobinom $\lambda_2 \leq \sqrt{3}$	153
7.3.2. Neke klase multicikličkih kaktusa sa osobinom $\lambda_2 \leq \sqrt{3}$	155
8. σ -transformacije Smitovih grafova	157
8.1. Modifikacije Smitovih stabala	157
8.2. σ -ekstenzije jedne familije tricikličkih kaktusa: klase T_1^- i T_2^-	158
8.3. σ -ekstenzije jedne klase tricikličkih kaktusa: klase Q_1^- i Q_2^-	163
Zaključak	165

Literatura	
Prilozi	
Prilog I - Slike	
Prilog II D3 - dodatak trećoj glavi	
Prilog III D5 - dodatak petoj glavi	

Uvod

U uvodu navodimo definicije osnovnih pojmova i osnovne činjenice koje koristimo u radu.

Graf G je u ovom radu konačan, neorijentisan i prost (bez petlji i višestrukih grana). Njegov indukovani podgraf nazivaćemo samo podgraf. Ako je H podgraf grafa G, onda ćemo reći i da je G nadgraf grafa H.

Ako graf G ima određeno svojstvo koje ima i svaki njegov podgraf, takvo svojstvo se zove *nasledno*. Ako pri tome nijedan nadgraf grafa G nema to svojstvo, graf G se naziva *maksimalan* za to svojstvo. Ako svaki podgraf grafa G ima određeno nasledno svojstvo, ali ga graf G nema, on se naziva *minimalan zabranjeni* graf za to svojstvo.

Za puteve dužine *n*, konture dužine *n* i zvezde sa n+1 čvorom, koristićemo uobičajene oznake P_{n+1} , C_n i K_{1n} , respektivno.

Čvor čijim se uklanjanjem iz grafa povećava broj komponenti povezanosti naziva se *artikulacioni čvor*. Grana čijim se uklanjanjem iz grafa povećava broj komponenti povezanosti naziva se *most. Viseća grana* je grana čiji je jedan čvor stepena 1.

Ako graf *G* sadrži konture kao svoje podgrafove, dužina najkraće konture se naziva *struk* grafa i označava sa g(G). Kontura koja je podgraf povezanog grafa naziva se njegovom *slobodnom konturom* ako ima samo jedan čvor stepena većeg od 2. Povezan graf se naziva *uniciklički* ako sadrži tačno jednu konturu, tj. ako mu je broj grana *m* jednak broju čvorova *n*. Ako sadrži više kontura naziva se *multiciklički*, specijalno *biciklički* ako sadrži dve konture (tj. ako važi m = n+1, gde je *m* broj grana, a *n* broj čvorova), *triciklički* ako sadrži tri (tj. ako važi m = n+2, gde je *m* broj grana, a *n* broj čvorova) itd. Ako konture grafa sadrže tačno jedan zajednički čvor, kaže se da obrazuju *snop* kontura.

Kaktus ili stabloliki graf, jeste graf u kome svake dve konture imaju najviše jedan zajednički čvor.

Graf u kome je jedan čvor posebno označen naziva se *korenski graf*, a označeni čvor se naziva *koren grafa*.

Koalescencija $G_1 \cdot G_2$ grafova G_1 i G_2 je graf koji je dobijen identifikacijom jednog čvora grafa G_1 sa jednim čvorom grafa G_2 . Koalescencija *n* grafova $G_1 \cdot G_2 \cdot ... \cdot G_n$ je graf koji se dobija identifikacijom čvorova $x_1, ..., x_n$, pri čemu čvor x_i pripada grafu G_i (i = 1, ..., n).

Ako je graf G formiran kao koalescencija grafova $G_1 \cdot G_2$, pri čemu je neki čvor grafa G_2 (tj. G_1) identifikovan sa čvorom x grafa G_1 (tj. G_2), kažemo da je graf G_1 proširen u čvoru x grafom G_2 , ili da je čvor x grafa G_1 opterećen grafom G_2 , ili da je graf G_2 oslonjen na čvor x grafa G_1 . Proširenje grafa G je dodavanje novih čvorova i grana grafu G tako da se dobije njegov pravi nadgraf. Proširenje grafa G u klasi C je takvo proširenje grafa G koje pripada određenoj klasi C povezanih grafova, da i dobijeni nadgraf pripada istoj klasi. U ovom radu će se proširenje u okviru neke klase kraće nazivati proširenje, jer će biti očigledno na koju se klasu odnosi.

Pod spektrom grafa G podrazumevaće se spektar njegove (0,1) matrice susedstva A(G), tj. familija sopstvenih vrednosti (nula karakterističnog polinoma $P_{A(G)}(\lambda) = \det(\lambda I - A(G))$) matrice A(G). Za nerijentisane grafove, sopstvene vrednosti su realne, pa se spektar može predstaviti kao uređena *n*-torka $S_P(G) = (\lambda_1, ..., \lambda_n)$, gde $\lambda_1 \ge ... \ge \lambda_n$. Najveća sopstvena vrednost naziva se *indeks grafa*. Indeks povezanog grafa je sopstvena vrednost reda 1 i veći je od indeksa svakog njegovog pravog podgrafa. Kod nepovezanog grafa spektar predstavlja uniju spektara njegovih komponenti, pa je indeks nepovezanog grafa jednak indeksu bar jedne komponente i može biti višestruk (ako više komponenti ima taj isti indeks). Takođe, dodavanje nove grane povezanom grafu dovodi do povećanja njegovog indeksa, dok ako je graf nepovezan, indeks može da ostane isti.

Sledeća teorema, tzv. teorema o preplitanju, jedna je od bazičnih teorema koje se odnose na spektar grafa (npr. [6]).

Teorema o preplitanju Neka je *G* proizvoljan graf čije su sopstvene vrednosti $\lambda_1 \ge ... \ge \lambda_n$, a *H* njegov podgraf, čije su sopstvene vrednosti $\mu_1 \ge ... \ge \mu_m$. Tada važi $\lambda_{n-m+i} \le \mu_i \le \lambda_i$, za i = 1, ..., m.

Jedna od očiglednih posledica ove teoreme je da je osobina $\lambda_2 \leq r$, za r > 0, nasledna.

1. Prethodni rezultati

U mnogim dosadašnjim radovima razmatrano je pitanje ograničenja druge sopstvene vrednosti i opisivane su razne klase grafova sa ograničenom λ_2 , a naročito su obrađivani refleksivni grafovi. U sledećem delu ukratko su navedeni dobijeni rezultati, pri čemu su malo detaljnije navedeni rezultati koji se tiču refleksivnih kaktusa, o kojima će više biti reči u narednim glavama.

1.1. Prethodni rezultati – razna ograničenja druge sopstvene vrednosti

Osobina grafa da mu je druga sopstvena vrednost ograničena nekim realnim brojem *a* je nasledna. Zato se svi grafovi sa osobinom $\lambda_2 \leq a$ u okviru neke klase grafova često opisuju pomoću maksimalnih, ili pomoću minimalnih zabranjenih grafova za ovu osobinu. U većem broju radova posmatrana su različita ograničenja druge sopstvene vrednosti: 1/3, $\sqrt{2}-1$, $\frac{\sqrt{5}-1}{2}$, 1, $\sqrt{2}$, $\sqrt{3}$ i 2. Prirodno, sa povećavanjem ograničenja *a* broj grafova sa osobinom $\lambda_2 \leq a$ raste i problem određivanja svih takvih grafova sve je teži.

Svi grafovi sa osobinom $0 < \lambda_2 < 1/3$ opisani su u [2], dok su grafovi sa osobinom $0 < \lambda_2 \le \sqrt{2} - 1$ okarakterisani u [24] i u [34]. Grafovi sa osobinom $\lambda_2 \le \frac{\sqrt{5} - 1}{2}$ proučavani su u [5], [6], [10], [11], [51], [54], ali nisu svi opisani.

Ograničenje $\lambda_2 \leq 1$ razmatrano je u većem broju radova. U [3] je druga sopstvena vrednost grafa dovedena u vezu sa najmanjom sopstvenom vrednošću komplementa, u [53], [54] su grafovi sa osobinom $\lambda_2 \leq 1$ analizirani primenom tehnike zvezda-komplementa, dok su u drugim radovima opisivane pojedine klase grafova sa osobinom $\lambda_2 \leq 1$, kao što su:

- povezani bipartitni grafovi (svi su opisani u [33]),
- grafovi grana (svi povezani grafovi, kao i svi minimalni zabranjeni grafovi opisani su u [35]),
- uopšteni grafovi grana (svi minimalni zabranjeni grafovi opisani su u [7], [8], a povezani uopšteni grafovi grana u [35], [36])
- biciklički grafovi (svi su opisani u [17]),
- uniciklički grafovi (svi su opisani u [58]),
- regularni grafovi i korone različite od konusa (svi su opisani u [20], [56])
- uopšteni theta-grafovi (svi su opisani u [21])
- podeljeno ugnežđeni grafovi (svi čija je druga sopstvena vrednost jednaka 1 opisani su u [27], a svi čija je druga sopstvena vrednost manja od 1 opisani su u [55])
- triciklički grafovi (svi su opisani u [25]).

U najnovijim radovima pojavljuju se i nova ograničenja druge sopstvene vrednosti: $\sqrt{2}$ i $\sqrt{3}$. U [57] opisana su sva stabla za koja važi $\lambda_2 \leq \sqrt{2}$, kao i klase regularnih bipartitnih i semiregularnih bipartitnih grafova kojima je druga sopstvena vrednost jednaka $\sqrt{2}$. U [21] opisani su svi regularni grafovi koji ne sadrže trougao sa osobinom $\lambda_2 \leq \sqrt{2}$, zatim svi bipartitni regularni grafovi za koje je $\lambda_2 \leq \sqrt{3}$, kao i svi bipartitni regularni grafovi stepena 3 za koje je $\lambda_2 \leq 2$.

Graf *G* sa osobinom $\lambda_2(G) \le 2$ naziva se refleksivni graf. Ovakvi grafovi imaju primenu u teoriji grupa refleksije, odakle potiče i naziv. Oni odgovaraju skupu vektora u Lorencovom prostoru $R^{p,1}$ čija je Gramova matrica 2I - A i u [32] se dovode u vezu sa sfernim i Euklidskim grafovima koji igraju ulogu u konstrukciji i klasifikaciji grupa refleksija.

Ako za refleksivni graf važi da je indeks grafa veći od 2, ovakav graf se naziva hiperbolički.

Refleksivnim grafovima bavi se najveći broj radova iz ove oblasti. Zbog velikog broja grafova i kompleksnosti istraživanja ovi grafovi još nisu do kraja ispitani, ali su pojedine klase delimično ili u potpunosti opisane.

Refleksivna, tj. hiperbolička stabla su prvi put razmatrana u [26]. U [31] su date tri opštije teoreme koje se odnose na ograničenje druge sopstvene vrednosti stabla proizvoljnim parametrom λ , koje se mogu primeniti i na slučaj $\lambda = 2$.

Veći broj dosadašnjih radova odnosi se na opisivanje stablolikih refleksivnih grafova, tj. refleksivnih kaktusa. Oni ne obuhvataju klase grafova koji sadrže snop kontura, za koje se ispostavilo da su veoma obimne. Prvi rezultati koji se tiču refleksivnih kaktusa potiču iz radova [26], [31] i [32]. Serija radova u kojima se opisuju karakteristične klase ovih grafova počinje radom [44], u kome su posmatrani biciklički grafovi sa mostom, a nastavlja se novijim radovima [19], [30], [38]-[43], [45]-[49], u kojima se opisuju i pojedine klase grafova sa više kontura ili uniciklički grafovi.

1.2. Refleksivni kaktusi

U navedenim radovima dovedena je u vezu osobina refleksivnosti grafa i prisustvo tzv. Smitovih grafova [52] kao podgrafova datog grafa. Smitovim grafovima se nazivaju svi povezani grafovi koji su maksimalni za osobinu $\lambda_1 \leq 2$ (Slika 1.).

Slika 1. Smitovi grafovi

Važne osobine Smitovih grafova formulisane su sledećim lemama.

Lema 1.1. [52] Neka je $\lambda_1(G)$ indeks grafa G. Tada je $\lambda_1(G) \le 2$ (specijalno $\lambda_1(G) < 2$) ako i samo ako je svaka komponenta grafa G podgraf (specijalno pravi podgraf) jednog od grafova sa Slike 1., koji svi imaju indeks 2.

Lema 1.2. [44] Neka je *G* povezan graf dobijen proširivanjem bilo kog Smitovog grafa čvorom proizvoljnog stepena. Tada je $P_G(2) \le 0$.

Pravi podgrafovi Smitovih grafova nazivaju se Kokseter-Dinkinovi grafovi. Predstavljeni su na Slici 2. Ovi grafovi imaju primene u različitim oblastima matematike, kao što su Lijeve algebre, terija haosa itd.

$$E_{8} \qquad E_{7} \qquad E_{6} \qquad D_{n}(n \ge 4) \qquad A_{n}$$

Slika 2. Kokseter-Dinkinovi grafovi

Veoma korisne veze između karakterističnog polinoma grafa i karakterističnih polinoma njegovih pravih podgrafova date su Švenkovim lemama. Napomenimo da ćemo ubuduće, u slučaju da je dat korenski graf G sa korenom v, podgraf G-v označavati sa \overline{G} , radi kratkoće.

Lema 1.3. [50] Ako su G_1 i G_2 dva korenska grafa sa korenima u_1 i u_2 , onda je karakteristični polinom njihove koalescencije dat sa

$$P_{G_1 \cdot G_2}(\lambda) = P_{G_1}(\lambda) P_{\overline{G}_2}(\lambda) + P_{\overline{G}_1}(\lambda) P_{G_2}(\lambda) - \lambda P_{\overline{G}_1}(\lambda) P_{\overline{G}_2}(\lambda)$$

Lema 1.4. [50] Neka je za dati graf G sa C(v), tj. C(uv), označen skup svih kontura koje sadrže čvor v, tj. granu uv. Tada važi:

$$\begin{split} P_{G}(\lambda) &= \lambda P_{G-\nu}(\lambda) - \sum_{u \in Adj(\nu)} P_{G-\nu-u}(\lambda) - 2 \sum_{C \in C(\nu)} P_{G-V(C)}(\lambda) \\ P_{G}(\lambda) &= P_{G-u\nu}(\lambda) - P_{G-\nu-u}(\lambda) - 2 \sum_{C \in C(u\nu)} P_{G-V(C)}(\lambda), \end{split}$$

gde Adj(v) označava skup čvorova koji su susedni čvoru v, a G-V(C) graf dobijen kad se iz G odstrane svi čvorovi koji pripradaju konturi C.

Prilikom izračunavanja karakterističnog polinoma grafa uobičajeno je da se koriste i dve posledice Švenkovih lema, poznate kao Hajlbronerove leme.

Lema 1.5. [6] Neka je G graf koji je nastao spajanjem čvora v_1 grafa G_1 sa čvorom v_2 grafa G_2 pomoću jedne grane. Tada važi:

$$P_{G}(\lambda) = P_{G_{1}}(\lambda)P_{G_{2}}(\lambda) - P_{\overline{G}_{1}}(\lambda)P_{\overline{G}_{2}}(\lambda).$$

Lema 1.6. [6] Neka je G graf sa visećom granom v_1v_2 , gde je $d(v_1) = 1$. Tada je

$$P_{G}(\lambda) = \lambda P_{G}(\lambda) - P_{G}(\lambda)$$

gde su G_1 , (tj. G_2), dobijeni odstranjivanjem čvora v_1 (tj. v_2) iz grafa G (tj. G_1).

1.2.1. Biciklički grafovi sa mostom

U prvom radu koji se bavi refleksivnim kaktusima [44] i koji se odnosi na klasu bicikličkih grafova sa mostom, data je teorema (u daljem tekstu RS-teorema), koja razmatra opštiji slučaj grafa sa artikulacionim čvorom. U ovom radu su prvi put uočene i transformacije Smitovih grafova, kao podgrafova datog grafa, i to cepanje i prelivanje. Navodimo prvo jednu od formulacija RS-teoreme.

Teorema 1.1. [44] (RS-teorema) Neka je G graf sa artikulacionim čvorom u i neka su grafovi $G_1, G_2, ..., G_n$ (n > 1) komponente grafa G - u (Slika 3). Tada:

 ako za najmanje dve komponente grafa G-u važi da im je indeks veći od dva, ili ako je indeks tačno jedne komponente veći od dva, a indeks bar jedne od preostalih komponenti jednak 2, onda važi λ₂(G) > 2;

- ako je za najmanje dve komponente grafa G-u indeks jednak 2 i za sve ostale komponente važi da im indeks nije veći od 2, onda važi λ₂(G) = 2;
- 3) ako najviše jedna komponenta grafa G-u ima indeks 2, a sve ostale indeks manji od dva, onda važi $\lambda_2(G) < 2$.

Slika 3. Graf G sa artikulacionim čvorom u

Kako za svaki povezan graf G važi tačno jedno od tvrđenja:

- *G* je jedan od Smitovih grafova
- *G* je pravi podgraf jednog od Smitovih grafova
- *G* je pravi nadgraf jednog od Smitovih grafova,

očigledno je da se RS-teorema može i drukčije formulisati.

Teorema 1.2. [39] (RS-teorema) Neka je G graf sa artikulacionim čvorom u i neka su grafovi $G_1, G_2, ..., G_n$ (n > 1) komponente grafa G - u (Slika 3). Tada:

- ako za najmanje dve komponente grafa G-u važi da su pravi nadgrafovi nekog od Smitovih grafova, ili ako je tačno jedna komponenta pravi nadgraf nekog od Smitovih grafova, a bar jedna od preostalih komponenti neki Smitov graf, onda važi λ₂(G) > 2;
- 2) ako su najmanje dve komponente grafa G-u neki Smitovi grafovi, a sve ostale komponente podgrafovi nekih od Smitovih grafova, onda važi $\lambda_2(G) = 2$;
- 3) ako je najviše jedna komponenta grafa G-u Smitov graf, a sve ostale pravi podgrafovi nekih od Smitovih grafova, onda važi $\lambda_2(G) < 2$.

Ova teorema je vrlo značajna za ispitivanje refleksivnih grafova, jer u velikom broju slučajeva daje odgovor na pitanje da li je graf refleksivan ili ne. Njena primena suzila je polje istraživanja samo na grafove kod kojih se, posle uklanjanja bilo kog

artikulacionog čvora, dobijaju komponente od kojih je jedna pravi nadgraf nekog Smitovog grafa (tj. čiji je indeks veći od 2), a sve ostale pravi podgrafovi proizvoljnih Smitovih grafova (tj. sa indeksima manjim od 2).

Graf kod koga se, posle uklanjanja bilo kog artikulacionog čvora, dobijaju komponente od kojih je jedna pravi nadgraf nekog Smitovog grafa (tj. čiji je indeks veći od 2), a sve ostale pravi podgrafovi proizvoljnih Smitovih grafova (tj. sa indeksima manjim od 2), zvaćemo *RS-neodlučiv* graf. Ostale grafove zvaćemo *RS-odlučivim* grafovima.

U [44] određeni su svi RS-neodlučivi biciklički grafovi sa mostom. Ciklička struktura grafa koji pripada ovoj klasi prikazana je na Slici 4. i čine je dve disjunktne konture C_m i C_n povezane mostom. Krajevi mosta su čvorovi c_1 i c_2 koji pripadaju redom konturama C_m i C_n (tzv. *c*-čvorovi). Čvorovi kontura koji su susedni *c* -čvorovima nazvani su crnim čvorovima, dok su preostali čvorovi kontura nazvani belim čvorovima (*c* -čvorovi nisu obojeni). Svaki čvor ovog centralnog dela može još dodatno biti opterećen granama, tj. stablima. Ovakvi grafovi su bili izabrani kao prvi pogodni za analizu, jer u slučaju da su konture povezane putem čija je dužina veća od 1, dobijeni graf postaje RS-odlučiv, a s druge strane, ako bi konture činile snop, problem postaje suviše složen.

Slika 4. Biciklički graf sa mostom (ciklička struktura)

Navešćemo glavni rezultat rada [44], kao i definicije cepanja i prelivanja Smitovih grafova iz istog rada.

Teorema 1.3. [44] Ako je *G* biciklički graf sa mostom između kontura i ako se na njega ne može primeniti RS-teorema, on je refleksivan ako i samo ako je podgraf nekog od grafova $A_1 - A_{14}$ (Prilog I - Slika 1.), $B_1 - B_{11}$ (Prilog I - Slika 2.), $C_1 - C_{41}$ (Prilog I - Slika 3.), $D_1 - D_{36}$ (Prilog I - Slika 4.). Ako bi se umesto biciklički reklo najmanje biciklički, zaključak bi obuhvatio i graf T_0 (Slika 5.c).

Osim c - čvorova, kod grafova $A_1 - A_{14}$ opterećena su bar još dva čvora spoljašnjih kontura, kod grafova $B_1 - B_{11}$ jedan beli i nijedan crni čvor, a kod grafova $C_1 - C_{41}$ jedan crni i nijedan beli čvor. Kod grafova $D_1 - D_{36}$ svi čvorovi spoljašnjih kontura, osim c_1 i c_2 , su stepena 2. Kod njih je prvi put uočeno cepanje i prelivanje Smitovih stabala.

Neka je *T* stablo koje može da nastane od dva stabla T_1 i T_2 identifikacijom čvora u_1 stabla T_1 sa čvorom u_2 stabla T_2 . Ako od stabla *T* formiramo stabla T_1 i T_2 kaže se da je došlo do *cepanja* stabla *T* u čvoru $u = u_1 = u_2$ na stabla T_1 i T_2 . (Važi i specijalni slučaj, kad je jedno od dobijenih stabala celo stablo *T*, a drugo samo čvor *u*.)

Ako se izvedu sva moguća cepanja jednog stabla T u svakom čvoru i ako se pri svakom cepanju dobijena stabla dodaju nekom grafu G tako što se čvorovi $u_1 \in T_1$ i $u_2 \in T_2$ identifikuju sa čvorovima v_1 i v_2 grafa G, kaže se da u dobijenom skupu novih grafova dolazi do *prelivanja* stabla T između čvorova v_1 i v_2 . (Ovim je obuhvaćen i specijalni slučaj, koji se svodi na dodavanje celog stabla T grafu G identifikovanjem jednog čvora stabla T sa jednim čvorom grafa G.)

Ako biciklički graf sa mostom između kontura *G* ima samo *c*-čvorove opterećene (čvorovi c_1 i c_2 su krajevi mosta, a c_1c_3 viseća grana), za njega važi Teorema 1.4. [42,44]. Dobijeni grafovi $D_1 - D_{36}$ nastali prelivanjem svih Smitovih stabala sa dodatkom grafa sa Slike 5. b) dati su na Slici 1. u Dodatku.

Teorema 1.4. [44] Ako je *G* biciklički graf sa mostom između dve konture na koji se RS-teorema ne može primeniti i ako su svi čvorovi kontura, osim čvorova c_1 i c_2 stepena 2, onda je *G* refleksivan ako i samo ako je on podgraf grafa dobijenog identifikacijom čvorova c_2 i c_3 sa dva čvora dobijena cepanjem proizvoljnog Smitovog stabla *S* u bilo kom čvoru na dva stabla S_1 i S_2 , tj. prelivanjem proizvoljnog Smitovog stabla između čvorova c_2 i c_3 (Slika 5.a)), ili podgraf grafa sa Slike 5.b).

Slika 5. *D*-grafovi i graf T_0

U [44] navedeno je eksplicitno svih 35 grafova koji su tipa grafa sa Slike 5.a), što zajedno sa grafom sa Slike 5.b) čini 36 maksimalnih refleksivnih grafova iz ove klase. Međutim, osim ovih, dobijen je i jedan maksimalni triciklični graf, tako što je umesto Smitovog stabla na čvor c_2 dodata kontura (koja je takođe Smitov graf). Dobijeni graf se označava sa T_0 i prikazan je na Slici 5.c).

1.2.2. Kaktusi sa najmanje 4 konture

U [42] je takođe određen i maksimalan broj kontura u RS-neodlučivom refleksivnom kaktusu koji ne sadrži snop kontura i određeni su svi maksimalni refleksivni kaktusi sa 5 kontura. U [41,42] su takođe određeni i svi maksimalni refleksivni kaktusi sa 4 konture (pod navedenim ograničenjima).

Teorema 1.5. [42] Stabloliki refleksivni graf na koji se ne može primeniti RS-teorema i čije konture ne čine snop može imati najviše pet kontura. Svi takvi grafovi koji sadrže pet kontura su maksimalni i pripadaju jednoj od familija: Q_1 , Q_2 , T_1 ili T_2 (Slika 6).

Slika 6. Familije Q_1 , Q_2 , T_1 , T_2

U razmatranju maksimalnih grafova u klasi refleksivnih kaktusa sa 4 konture polazi se od ove 4 familije [41,42] i definišu nove 4 familije Q_1^- , Q_2^- , T_1^- i T_2^- (Slika 7.).

Slika 7. Familije $Q_1^-, Q_2^-, T_1^-, T_2^-$

Za graf koji ima cikličku strukturu kao graf sa Slike 7. kažemo da je graf tipa Q_1^- (Q_2^- , T_1^- ili T_2^-).

Grafovi tipa Q_1^- , Q_2^- , T_1^- i T_2^- su analizirani i određeni u [41] (oni kod kojih je dodatno opterećen bar jedan čvor koji nije *c*-čvor) i u [42] (oni kod kojih su dodatno opterećeni samo *c*-čvorovi).

Rezultati su u prvom slučaju dati sledećim lemama.

Lema 1.7. [41] Svako proširivanje grafa tipa Q_1^- (Slika 7.a)) pomoću grane dodate na bilo koji čvor spoljašnjih kontura (različit od $c_1 \, \mathrm{i} \, c_2$) povlači $\lambda_2 > 2$.

Lema 1.8. [41] Stabloliki refleksivni graf tipa Q_2^- (Slika 7.b)), kod koga je najmanje jedan čvor spoljašnjih kontura koji se razlikuje od *c*-čvorova opterećen, refleksivan je ako i samo ako on predstavlja podgraf nekog od grafova $H_1 - H_{48}$ (Prilog I - Slika 5.).

Lema 1.9. [41] Stabloliki refleksivni graf tipa T_1^- (Slika 7.c)), kod koga je najmanje jedan čvor spoljašnjih kontura koji se razlikuje od *c*-čvorova opterećen, refleksivan je ako i samo ako on predstavlja podgraf nekog od grafova $I_1 - I_9$ (Prilog I - Slika 6.), $J_1 - J_{11}$ (Prilog I - Slika 7.) ili $K_1 - K_{36}$ (Prilog I - Slika 8.).

Lema 1.10. [41] Stabloliki refleksivni graf tipa T_2^- (Slika 7.d)), kod koga je najmanje jedan čvor spoljašnjih kontura koji se razlikuje od *c*-čvorova opterećen, refleksivan je

ako i samo ako on predstavlja podgraf nekog od grafova $L_1 - L_{12}$ (Prilog I - Slika 9.), $M_1 - M_{12}$ (Prilog I - Slika 10.) ili $N_1 - N_{42}$ (Prilog I - Slika 11.).

U drugom slučaju, kad su dodatno opterećeni samo *c*-čvorovi, uočena je pojava prelivanja Smitovih stabala, parova Smitovih stabala i trojki Smitovih stabala. Rezultati su dati sledećim lemama.

Lema 1.11. [42] Ako se kontura koja sadrži čvor c_1 (ili c_4) grafa Q_1 zameni bilo kojim Smitovim stablom, pri čemu se proizvoljni čvor Smitovog stabla može identifikovati sa c_1 (tj. c_4), svi dobijeni grafovi su maksimalni refleksivni kaktusi (Slika 8.a).

Lema 1.12. [42] Ako se ukloni bilo koja od četiri spoljašnje konture grafa Q_2 , npr. ona koja sadrži c_3 , i sa čvorovima c_3 i c_2 identifikuju dva nova čvora, dobijena cepanjem bilo kog Smitovog stabla u proizvoljnom čvoru na stabla S_1 i S_2 , uključujući i slučaj kad je celo Smitovo stablo dodato na c_3 tj. c_2 svi dobijeni grafovi su maksimalni refleksivni kaktusi (Slika 1.8.b).

Slika 8. Zamena konture u Q_2

Lema 1.13. [42] Ako se ukloni jedna od kontura koje sadrže čvor c_2 grafa T_1 , i sa čvorovima c_2 i c_3 identifikuju dva nova čvora, dobijena cepanjem bilo kog Smitovog stabla u proizvoljnom čvoru na stabla S_1 i S_2 , svi dobijeni grafovi su maksimalni refleksivni kaktusi, uključujući i slučaj kad je celo Smitovo stablo dodato na čvor c_2 ili c_3 (Slika 9.).

Slika 9. Zamena konture u T_1

U [42] dato je i sledeće, preciznije tvrđenje.

Lema 1.14. [42] Ako se graf sa četiri konture dobijen uklanjanjem konture koja sadrži c_2 iz grafa T_1 proširi dodavanjem stabala isključivo na *c*-čvorove, dobijeni graf biće refleksivan ako i samo ako je on podgraf nekog od grafova iz familije prikazane na Slici 9.

Lema 1.15. [42] Neka je G graf dobijen uklanjanjem jedne od spoljašnjih kontura koje sadrži čvor c_2 iz grafa T_2 i identifikovanjem čvorova c_2 i c_3 sa dva nova čvora, dobijena cepanjem bilo kog Smitovog stabla u proizvoljnom čvoru na stabla S_1 i S_2 , uključujući i slučaj kad je celo Smitovo stablo dodato na čvor c_2 ili c_3 (Slika 10.a)) Tada je $\lambda_2(G) = 2$ i G je maksimalan refleksivan graf, sa izuzetkom slučaja kad se Smitovo stablo W_n cepa na dva analogna dela (kada je moguće i dalje proširivanje).

Slika 10. Zamena konture u T_2

Iz dokaza prethodne leme dobija se indukcijom i specijalan slučaj uključen u sledeću lemu i prikazan na Slici 10.b).

Slika 11. Specijalan slučaj za T_2^-

Lema 1.16. [42] Neka je G graf dobijen uklanjanjem jedne od spoljašnjih kontura koje sadrži čvor c_2 iz grafa T_2 i dodavanjem stabala na sve njegove *c*-čvorove. Dobijeni graf je maksimalni refleksivni ako i samo ako pripada familiji sa Slike 10.b) ili jednoj od familija sa Slike 11.

Analogno Lemi 1.12. i za slučaj grafa T_2 dato je još jedno tvrđenje.

Lema 1.17. [42] Ako se graf sa četiri konture dobijen uklanjanjem konture koja sadrži čvor c_2 iz grafa T_2 proširi dodavanjem stabala isključivo na *c*-čvorove, dobijeni graf biće refleksivan ako i samo ako je on podgraf nekog od grafova iz familije prikazane na Slikama 10.a), b) i 11.

1.2.3. Triciklički kaktusi

Triciklički RS-neodlučivi refleksivni kaktusi čije konture ne čine snop su podeljeni u 4 klase [30].

U takvim kaktusima uočava se centralna kontura i dve spoljašnje konture, koje sa centralnom imaju po jedan zajednički čvor. Rastojanje dodirnih čvorova na centralnoj konturi ne sme biti veće od 2, zbog refleksivnosti. Zato centralna kontura može najviše biti četvorougao u slučaju da su dodirni čvorovi nesusedni. Klasifikacija tricikličkih kaktusa izvršena je na osnovu njihove cikličke strukture: klasu R_1 čine kaktusi sa centralnim četvorouglom i nesusednim dodirnim čvorovima na centralnoj konturi, klasu R_2 čine kaktusi sa centralnim trouglom, klasu R_3 čine kaktusi sa centralnim četvorouglom i susednim dodirnim čvorovima, a klasu R_4 kaktusi čija je centralna kontura dužine veće od 4, pri čemu su dodirni čvorovi susedni (Slika 12).

Klase $R_1 - R_3$ biće detaljno opisane u glavi 2, dok je klasa R_4 opisana u [46], gde su predstavljeni svi maksimalni refleksivni kaktusi ovog tipa, što je navedeno u sledećoj teoremi. Graf sa slike 13. nazvan je osnovni *L*-graf.

Slika 13. Osnovni L-graf

Teorema 1.6. [46] Posmatrajmo triciklički graf koji ima cikličku strukturu kao osnovni *L*-graf (Slika 36.). Ako je $4 \le l \le 9$, graf je refleksivan ako i samo ako je podgraf jednog od grafova L09 1-3, L08 1-6, L07 1-5, L06 1-17, L05 1-34, L04 1-93 (Slika 5.-Dodatak.). Ako je $l \ge 10$ graf je refleksivan ako i samo ako je osnovni *L*- graf. U ovom radu je takodje uočeno prisustvo Smitovih grafova kao podgrafova dobijenih malsimalnih refleksivnih kaktusa i određene modifikacije Smitovih stabala, koje su dale grafove nazvane grafovi tipa X i Y. Mnogi od maksimalnih L-grafova su tipa X ili Y. O Ovoj i sličnim modifikacijama Smitovih stabala biće više reči u glavi 8.

1.2.4. Uniciklički refleksivni kaktusi, još neki biciklički kaktusi i θ-grafovi

U [40] je opisana mogućnost zamene slobodne konture u maksimalnom refleksivnom kaktusu proizvoljnim Smitovim stablom, tako da dobijeni graf bude ponovo maksimalni refleksivni kaktus. Uslovi pod kojima je ova zamena moguća opisani su sledećom teoremom, koju ćemo u daljem tekstu zvati *Teorema o zameni*.

Teorema 1.7. [40] Neka je graf sa Slike 14.a) maksimalni refleksivni kaktus za koji je P(2) = 0 i $P_G(2) < 0$ i neka za svako proširenje G_1 dobijeno dodavanjem viseće grane na G važi $P_{G_1}(2) - 2P_{G_1-\nu}(2) > 0$. Ako se slobodna kontura C zameni proizvoljnim Smitovim stablom, dobijeni graf (Slika 14.b) je opet maksimalni refleksivni kaktus.

Slika 14. Teorema o zameni

U [38] su prvi put analizirani uniciklički refleksivni grafovi. Opisana je klasa maksimalnih unicikličkih refleksivnih grafova koja je dobijena iz već poznate klase bicikličkih grafova sa mostom korišćenjem Teoreme o zameni . Takođe su opisane još neke klase maksimalnih refleksivnih unicikličkih grafova dobijene prelivanjem Smitovih stabala, parova Smitovih stabala i trojki Smitovih stabala. Pokazano je da kontura može imati i samo jedan opterećen čvor, ali i da ako je dužina konture veća od 8, broj njenih opterećenih čvorova ne prelazi 7. Takođe, pokazano je da u refleksivnom

unicikličkom grafu sa strukom dužine 8 svi čvorovi konture mogu biti dodatno opterećeni i određeno je svih 6 takvih maksimalnih grafova.

U [19] je nastavljeno sa analizom maksimalnih refleksivnih unicikličkih grafova i opisani su svi sa 7 opterećenih čvorova konture, sa strukom dužine 8, 9 i 10.

Osim bicikličkih grafova sa mostom, opisana je još jedna uska klasa bicikličkih grafova. To su RS-neodlučivi grafovi sa dve slobodne konture, čiji je zajednički čvor stepena 5. Svi ovakvi maksimalni refleksivni grafovi opisani su u [40].

Refleksivni theta-grafovi razmatrani su u [46] i tu su opisane tri karakteristične klase, u kojima je ponovo razmatran položaj i uloga njihovih podgrafova koji su Smitovi grafovi, a u nekim slučajevima su dovedeni u vezu sa grafovima tipa X i Y.

2. Neka preslikavanja i znak $\lambda_2 - 2$

U ovoj glavi uvodimo preslikavanja, unutar određenih familija grafova ili između različitih familija, koja su definisana pomoću lokalnih transformacija u jednom delu grafa. Ova preslikavanja nisu invarijantna u odnosu na ceo spektar, ali predstavljaju generalizaciju preslikavanja koja dovođe do kospektralnih grafova, jer čuvaju u potpunosti ili u izvesnoj meri određenu spektralnu osobinu, tj. znak izraza $\lambda_2 - 2$. Pomoću ovakvih preslikavanja mogu se uspostaviti i odgovarajuće relacije ekvivalencije između grafova i efikasnije i elegantnije opisati mnogi dobijeni rezultati koji se tiču refleksivnih kaktusa, kao i novi rezultati iz treće i četvrte glave. Takođe, ova preslikavanja imaju i svoja uopštenja, koja ćemo prikazati u šestoj glavi.

2.1. Preslikavanja α i β

Opisaćemo preslikavanja α i β određenih familija grafova u same sebe koja čuvaju znak izraza $\lambda_2 - 2$.

Uočimo familiju \boldsymbol{v} povezanih grafova sa bar dva mosta čiji su podgrafovi *S*, *A* i *B* korenski grafovi (sa korenima *x*, *a*, *b* respektivno), koji su međusobno povezani mostovima kao na Slici 15.a), pri čemu je *S* proizvoljan Smitov graf. Za graf G_1 sa Slike 15.a) uvodimo oznaku G(S, A, B).

Preslikavanje $\alpha : \mathcal{V} \to \mathcal{V}$ određeno je sa $\alpha(G_1) = G_2$, gde je $G_1 = G(S, A, B)$ i $G_2 = G(S, A \cdot B, b)$ (Slika 15.b), pri čemu je podgraf B - b grafa G_1 jednak podgrafu B - a grafa G_2 .

Slika 15. α -preslikavanje

Napomena: Prethodno preslikavanje mogli smo označiti sa α_a , dok bi $\alpha_b : \mathcal{V} \to \mathcal{V}$ bilo definisano sa $\alpha_b(G_1) = G_2'$, gde je $G_2' = G(S, a, A \cdot B)$, pri čemu bi sada podgraf A-a grafa G_1 bio jednak podgrafu A-b grafa G_2 . Međutim, grafovi G_2 i G_2' su očigledno izomorfni, tako da nećemo praviti razliku između ova dva preslikavanja, kao ni ubuduće u sličnim slučajevima, osim ako je to neophodno.

Posmatrajmo sada drugu familiju \mathcal{U} povezanih grafova sa bar dva mosta, čiji su podgrafovi *A* i *B* korenski (sa korenima *a* i *b*) dok podgraf *S*, koji je proizvoljan Smitov graf, ima dva istaknuta čvora *x* i *y* na koje su oslonjeni mostovi *xa* i *yb* (Slika 16.a). Za graf sa Slike 16.a) uvodimo oznaku G = G(S, x, A, y, B).

Slika 16. β -preslikavanje

Preslikavanje $\beta: \mathcal{U} \to \mathcal{U}$ određeno je sa $\beta(G_1) = G_2$, gde je $G_1 = G(S, x, A, y, B)$ i $G_2 = G(S, x, A \cdot B, y, b)$ (Slika 16.b) pri čemu je, kao i u prethodnom slučaju, podgraf B-b grafa G_1 jednak podgrafu B-a grafa G_2 . **Napomena**: Prethodno preslikavanje mogli smo označiti sa β_a , dok bi $\beta_b : \mathcal{U} \to \mathcal{U}$ bilo definisano sa $\beta_b(G_1) = G_2'$, gde je $G_2' = G(S, x, a, y, A \cdot B)$, pri čemu bi sada podgraf A-a grafa G_1 bio jednak podgrafu A-b grafa G_2 . U ovom slučaju čak grafovi G_2 i G_2' ne moraju biti izomorfni, ali nećemo operisati sa oba ova preslikavanja, osim ako je to neophodno.

Dokazaćemo da pri određenim uslovima ova dva preslikavanja čuvaju znak izraza $\lambda_2 - 2$. Napomenimo i da ćemo ubuduće, u slučaju da je G korenski graf sa korenom v, graf G - v označavati sa \overline{G} kao i da ćemo npr. $P_G(2)$ označavati sa P_G .

Lema 2.1. Neka je G graf sa artikulacionim čvorom u. Ako sve komponente grafa G-u, osim jedne, imaju indeks manji od 2, a preostala komponenta ima osobinu $\lambda_i < 2$ (tj. $\lambda_i \le 2$) za neko $i \in N$, tada važi $\lambda_{i+1}(G) < 2$ (tj. $\lambda_{i+1}(G) \le 2$).

Dokaz: Sledi iz Teoreme o preplitanju.

Prelazimo na tvrđenja koja se tiču preslikavanja α i β .

Teorema 2.1. Neka je G = G(S, A, B) graf iz familije \mathcal{V} . Tada važi $sgn(\lambda_2(G) - 2) = sgn(\lambda_2(\alpha(G)) - 2).$

Dokaz: Najpre, ako je za bar jedan od podgrafova \overline{A} , \overline{B} indeks veći ili jednak 2, po RSteoremi važiće $\lambda_2(G) > 2$ i $\lambda_2(\alpha(G)) > 2$, tj. $sgn(\lambda_2(G) - 2) = sgn(\lambda_2(\alpha(G)) - 2) = 1$.

Pretpostavimo sada da je $\lambda_1(\overline{A}) < 2$ i $\lambda_1(\overline{B}) < 2$ i dokažimo prvo da je $\lambda_3(G) < 2$ i $\lambda_3(\alpha(G)) < 2$. U grafu G-a važi $\lambda_1(\overline{A}) < 2$ i $\lambda_2(G-A) < 2$ (po RS-teoremi primenjenoj na čvor *b*), pa je, po Lemi 2.1., $\lambda_3(G) < 2$. Slično, za $\alpha(G) - a$ važi $\lambda_1(\overline{A}) < 2$, $\lambda_1(\overline{B}) < 2$ i $\lambda_2(G-A \cdot B) < 2$ (po RS-teoremi primenjenoj na čvor *x*), pa je, po Lemi 2.1., $\lambda_3(\alpha(G)) < 2$. Kako su, očigledno, indeksi grafova *G* i $\alpha(G)$ veći od 2, imamo mogućnost da na osnovu znaka P_G , odnosno $P_{\alpha(G)}$, zaključimo kakav je znak

izraza $\lambda_2 - 2$ za oba grafa. Naime, važiće sgn $P_G = \text{sgn}(\lambda_2(G) - 2)$ i sgn $P_{\alpha(G)} = \text{sgn}(\lambda_2(\alpha(G)) - 2)$. Sada ćemo primenom Švenkovih lema izračunati P_G i $P_{\alpha(G)}$:

$$P_{G} = P_{B}(P_{S}P_{A} - P_{\overline{S}}P_{\overline{A}}) - P_{\overline{B}}P_{\overline{S}}P_{A} = P_{S}P_{A}P_{B} - P_{\overline{S}}(P_{\overline{A}}P_{B} + P_{A}P_{\overline{B}}),$$
$$P_{\alpha(G)} = (P_{\overline{A}}P_{B} + P_{A}P_{\overline{B}} - 2P_{\overline{A}}P_{\overline{B}})(2P_{S} - P_{\overline{S}}) - 2P_{\overline{A}}P_{\overline{B}}P_{\overline{S}}.$$

Odavde, zbog $P_S = 0$, sledi $P_G = -P_{\overline{S}}(P_{\overline{A}}P_B + P_AP_{\overline{B}}) = P_{\alpha(G)}$, pa je onda i $\operatorname{sgn}(\lambda_2(G) - 2) = \operatorname{sgn}(\lambda_2(\alpha(G)) - 2)$. \Box

Teorema 2.2. Neka je G = G(S, x, A, y, B) graf iz familije \mathcal{U} za koji važi $P_{S-x} = P_{S-y}$. Tada je $\operatorname{sgn}(\lambda_2(G) - 2) = \operatorname{sgn}(\lambda_2(\beta(G)) - 2)$.

Dokaz: Analogno prethodnom dokazu, odmah vidimo da ako je $\lambda_1(\overline{A}) \ge 2$ ili $\lambda_1(\overline{B}) \ge 2$ sledi $\lambda_2(G) > 2$ i $\lambda_2(\beta(G)) > 2$, pa je $\operatorname{sgn}(\lambda_2(G)-2) = \operatorname{sgn}(\lambda_2(\beta(G)-2) = 1.$

Za $\lambda_1(\overline{A}) < 2$ i $\lambda_1(\overline{B}) < 2$, važiće $\lambda_3(G) < 2$ i $\lambda_3(\beta(G)) < 2$ (jer je u grafu G-a zbog RS-teoreme $\lambda_1(\overline{A}) < 2$ i $\lambda_2(G-A) < 2$, a u grafu $\beta(G) - a$ su indeksi grafova \overline{A} i \overline{B} manji od 2 i $\lambda_2(G-A \cdot B) < 2$), pa po Lemi 2.1. sledi prethodni zaključak. Kako su indeksi grafova G i $\beta(G)$ veći od 2, ponovo je dovoljno da izračunamo vrednost karakterističnih polinoma P_G i $P_{\beta(G)}$ primenom Švenkovih lema:

$$\begin{split} P_{G} &= P_{B}(P_{S}P_{A} - P_{S-x}P_{\bar{A}}) - P_{\bar{B}}(P_{S-y}P_{A} - P_{S-x-y}P_{\bar{A}}), \\ P_{\beta(G)} &= (2P_{S} - P_{S-y})(P_{A}P_{\bar{B}} + P_{\bar{A}}P_{B} - 2P_{\bar{A}}P_{\bar{B}}) - P_{\bar{A}}P_{\bar{B}}(2P_{S-x} - P_{S-x-y}), \end{split}$$

odakle zbog $P_{S} = 0$ i $P_{S-x} = P_{S-y}$ sledi $P_{G} = -P_{S-x}(P_{\bar{A}}P_{B} + P_{A}P_{\bar{B}}) + P_{S-x-y}P_{\bar{A}}P_{\bar{B}} = P_{\beta(G)}$.

Dakle, i u ovom slučaju je $sgn(\lambda_2(G)-2) = sgn(\lambda_2(\beta(G)-2).\Box)$

Primetimo da preslikavanje α (tj. β) indukuje u klasi \boldsymbol{v} (\boldsymbol{u}) relaciju ekvivalencije, koju ćemo zvati α -ekvivalencija (β -ekvivalencija), datu sa: $(\forall G_1, G_2 \in \boldsymbol{v}) \ G_1 \sim_{\alpha} G_2 \Leftrightarrow$ $\alpha(G_1) = \alpha(G_2)$, tj. $(\forall G_1, G_2 \in \boldsymbol{u}) \ G_1 \sim_{\beta} G_2 \Leftrightarrow \beta(G_1) = \beta(G_2)$.

Klasa ekvivalencije grafa G biće $\alpha^{-1}(\alpha(G))$, tj. $\beta^{-1}(\beta(G))$. Takodje, važe i

implikacije:
$$\begin{array}{l} G_1 \sim_{\alpha} G_2 \Longrightarrow \operatorname{sgn}(\lambda_2(G_1) - 2) = \operatorname{sgn}(\lambda_2(G_2) - 2), \\ G_1 \sim_{\beta} G_2 \Longrightarrow \operatorname{sgn}(\lambda_2(G_1) - 2) = \operatorname{sgn}(\lambda_2(G_2) - 2). \end{array}$$

Iz ovoga se, između ostalog, može zaključiti da ako je $G_1 = G(S, A \cdot C, B)$ i $G_2 = G(S, A, B \cdot C)$, važi $G_1 \sim_{\alpha} G_2$, jer je $\alpha(G_1) = \alpha(G_2) = G(S, A \cdot B \cdot C, b)$. Slično, za $G_1 = G(S, x, A \cdot C, y, B)$ i $G_2 = G(S, x, A, y, B \cdot C)$ važi $G_1 \sim_{\beta} G_2$, jer je $\beta(G_1) = \beta(G_2) = G(S, x, A \cdot B \cdot C, y, b)$.

Kako određene familije grafova sa više mostova koje su od interesa za nas mogu da se predstave i kao v, i kao u, u njima možemo uočiti obe relacije ekvivalencije.

2.2. Primena preslikavanja α i β na klasu bicikličkih grafova sa mostom

U prvoj glavi prikazani su rezultati kojima se opisuju svi refleksivni grafovi iz klase bicikličkih grafova sa mostom [44] (Prilog I - Slike 1-4.). Sada ćemo videti kako se do većine datih rezultata može doći polazeći od odgovarajućih RS-odlučivih refleksivnih grafova sa jednom slobodnom konturom, primenom α i β preslikavanja.

U familiji grafova $A_1 - A_{14}$ jedino graf A_2 ima slobodnu konturu, ali i kod njega se, kao dodatno opterećeni, pojavljuju dva čvora na drugoj konturi različita od *c*-čvorova, tako da vidimo da *A*-grafovi nisu pogodni za primenu navedenih preslikavanja, mada i u ovoj potklasi možemo uočiti neke veze indukovane preslikavanjem β : $\beta(A_3) = A_7$ (gde je *S* jedan od trouglova), $\beta(A_4) = A_9$ (*S* je trougao), $\beta(A_5) = A_{10}$ (S je trougao) i $\beta(A_6) = A_8$ (S je četvorougao). Potklasu *B*, tj. *C*, karakteriše to što je kontura koja sadrži c_1 slobodna, dok su obavezno dodatno opterećeni jedan beli, tj. jedan crni čvor sa druge konture, i čvor c_1 ; pri tome je stepen belog (crnog) čvora jednak 3, a stepen c_1 jednak 4 (pri čemu čvor c_2 može biti dodato opterećen) ili 5 (pri čemu čvor c_2 ne može biti dodatno opterećen), što se može pokazati računanjem odgovarajućih karakterističnih polinoma. Ako čvor c_2 jeste dodatno opterećen, takav graf će biti α -ekvivalentan grafu kod koga je $d(c_2) = 3$, pa dalje možemo analizirati samo grafove u kojima su opterećeni samo c_1 i jedan beli (crni) čvor sa druge konture (Slika 17.a) i b)), a onda možemo uočiti β -ekvivalenciju takvog grafa sa grafom kod koga je opterećen samo jedan beli (crni) čvor (Slika 17. c) i d)). Naravno, grafovi kod kojih je opterećen samo jedan beli ili crni čvor su RSodlučivi, tj. nakon odstranjivanja čvora c_2 ostaju dve komponente: kontura sa čvorom c_1 i druga komponenta *K*, koja je stablo, i od koje zavisi da li je posmatrani biciklički graf *G* refleksivan ili ne (naime, sgn $(\lambda_1(K) - 2) = \text{sgn}(\lambda_2(G) - 2)$).

Slika 17. Primena α i β preslikavanja

Sada treba opisati sva moguća maksimalna stabla *K* čiji je indeks manji ili jednak 2, čija struktura mora biti kao na Slici 18.a) u slučaju potklase *B*, tj. kao na Slici 19.a) u slučaju potklase *C*, gde je podgraf *H* netrivijalan (jer se posle na graf *G* primenjuje β -preslikavanje). Dakle, tražimo sva Smitova stabla koja su traženog oblika, ili njihova maksimalna podstabla koja ne mogu da se prošire, a da ostanu tražene strukture.

U slučaju potklase *B*, vidimo da je min $(i, j) \le 2$, jer je u suprotnom *H* trivijalan, i da iz istog razloga $i = 2 \Rightarrow j = 2$ i $i = 1 \Rightarrow j \in \{1, 2, 3, 4, 5\}$, pa ćemo odgovarajuće komponente K_1, \dots, K_6 predstaviti na Slici 18.b). Primetimo da je biciklički graf *G* za $K = K_1 \beta$ -ekvivalentan sa B_8 ; za $K = K_2$, $G \sim_{\beta} B_{11}$; za $K = K_3$, $G \sim_{\beta} B_{10}$ (ovo je jedini slučaj kad je $\lambda_2(G) < 2$, zato što je komponenta K_3 pravo podstablo Smitovog stabla); za $K = K_4$, $G \sim_{\beta} B_9$ i dalje $B_9 \sim_{\alpha} B_4$; za $K = K_5$, $G \sim_{\beta} B_7$ i $B_7 \sim_{\alpha} B_3$; za $K = K_6$, $G \sim_{\beta} B_5$ i dalje $B_5 \sim_{\alpha} B_1$, a u specijalnim slučajevima za l = 0 je i $G \sim_{\beta} B_6$, a za l = 1 i $G \sim_{\alpha} B_2$. Ovim su opisani svi grafovi $B_1 - B_{11}$.

Slika 18. Stabla K za potklasu B

Kod potklase *C* u opštem slučaju za *i* nema ograničenja, međutim *i* će biti proizvoljno samo u slučaju kad je $K = K_1$, dok je u ostalim slučajevima, kad je $K = K_2, ..., K_{12}$ (Slika 19.b), $i \le 4$.

Slika 19. Stabla K za potklasu C

Za $K = K_1$ biće $G \sim_{\beta} C_{16}$ i dalje $C_{16} \sim_{\alpha} C_{31}$, dok je u specijalnim slučajevima za $i \ge 5$, l = 0 graf G β -ekvivalentan i sa C_{10} , a za $i \ge 4$, l = 1 graf C_{16} dalje α -ekvivalentan sa C_{41} . U ovim slučajevima biće $\lambda_2 < 2$, jer je K_1 pravi podgraf Smitovog stabla.

U ostalim slučajevima:

- za $K = K_2$, sledi $G \sim_{\beta} C_{15}, C_9, C_8$ i dalje $C_8 \sim_{\alpha} C_{27}$;
- za $K = K_3$, sledi $G \sim_{\beta} C_{19}$, a $C_{19} \sim_{\alpha} C_{30}, C_{40}, C_{39}$;
- za $K = K_4$, sledi $G \sim_{\beta} C_{14}, C_7, C_6$, a $C_6 \sim_{\alpha} C_{26}$ (ovde je takođe $\lambda_2 < 2$);
- za
$$K = K_5$$
, sledi $G \sim_{\beta} C_{18}$, a $C_{18} \sim_{\alpha} C_{34}$;
- za $K = K_6$, sledi $G \sim_{\beta} C_{21}$, dok je $C_{21} \sim_{\alpha} C_{29}, C_{38}, C_{37}$ ($\lambda_2 < 2$);
- za $K = K_7$, sledi $G \sim_{\beta} C_{13}, C_5, C_4$, a $C_4 \sim_{\alpha} C_{25}$;
- za $K = K_8$, sledi $G \sim_{\beta} C_{17}$, a $C_{17} \sim_{\alpha} C_{32}$;
- za $K = K_9$, sledi $G \sim_{\beta} C_{20}$, a $C_{20} \sim_{\alpha} C_{33}$ ($\lambda_2 < 2$);
- za $K = K_{10}$, sledi $G \sim_{\beta} C_{22}$, a $C_{22} \sim_{\alpha} C_{35}, C_{28}, C_{36}$;
- za $K = K_{11}$, sledi $G \sim_{\beta} C_{11}, C_2$, a $C_2 \sim_{\alpha} C_{23}$;
- za $K = K_{12}$, sledi $G \sim_{\beta} C_{12}, C_1, C_3$, a $C_1 \sim_{\alpha} C_{24}$.

Ovim su opisani svi podgrafovi potklase C.

U slučaju potklase *D*, kod koje su dodatno opterećeni samo *c*-čvorovi, već pominjano prelivanje Smitovih stabala predstavlja zapravo α -preslikavanje RS-odlučivih u RS-neodlučive grafove, čime su opisani svi *D*-grafovi osim D_{36} , koji je zbog $d(c_1) = d(c_2) = 5$ neupotrebljiv za α i β preslikavanja, ali je istovremeno i specijalan slučaj klase grafova *D*.

Videli smo da se u klasi bicikličkih kaktusa sa mostom svi maksimalni refleksivni grafovi, osim grafova iz klase A i grafa D_{36} , mogu dobiti primenom α i β preslikavanja na RS-odlučive grafove.

2.3. Preslikavanja ω , τ i φ

Sada ćemo opisati neka preslikavanja između određenih karakterističnih familija grafova i opisati osobine ovih preslikavanja koje se tiču znaka izraza $\lambda_2 - 2$.

Neka je \mathcal{F} familija povezanih grafova koji sadrže bar jedan trougao, na čije su čvorove redom oslonjeni korenski grafovi *S*, *A* i *B* (sa korenima *x*, *a* i *b*), pri čemu je *S* proizvoljan Smitov graf (Slika 20.a). Uvešćemo oznaku C(S, A, B) za graf koji pripada ovoj familiji.

Slika 20. Familije $\mathcal{T}, \mathcal{T}', \mathcal{V}$ i \mathcal{Q}

Preslikavanje $\omega: \mathcal{T} \to \mathcal{V}$ određeno je sa $\omega(G_1) = G_2$, gde je $G_1 = C(S, A, B)$ (Slika 20.a), a $G_2 = G(S, A, B)$ (Slika 20.c). Ovo preslikavanje ne čuva znak izraza $\lambda_2 - 2$, ali ipak u izvesnoj meri dovodi u vezu znak ovog izraza kod originala i slike, što pokazuje sledeća teorema.

Teorema 2.3. Neka je graf $G \in \mathcal{G}$ dat sa G = C(S, A, B). Tada važi implikacija: $\operatorname{sgn}(\lambda_2(\omega(G)) - 2) \in \{-1, 0\} \Longrightarrow \operatorname{sgn}(\lambda_2(G) - 2) = -1$.

Dokaz: Kako je $\lambda_2(\omega(G)) \leq 2$, grafovi \overline{A} i \overline{B} ne mogu imati indeks veći ili jednak 2. Zbog toga, po Lemi 2.1., za graf G važi $\lambda_3(G) < 2$ (jer je $\lambda_1(\overline{B}) < 2$ i $\lambda_2(G-B) < 2$, po RS-teoremi). Kako je indeks grafa G veći od 2, možemo analizirati znak karakterističnog polinoma u tački 2. Koristeći Švenkove leme dobijamo

$$P_{G} = P_{S}(P_{A}P_{B} - P_{\bar{A}}P_{\bar{B}}) + P_{\bar{S}}(2(P_{A}P_{B} - P_{\bar{A}}P_{\bar{B}}) - P_{\bar{A}}P_{B} - P_{A}P_{\bar{B}} - 2P_{\bar{A}}P_{\bar{B}}) - 2P_{\bar{S}}(P_{A}P_{B} - P_{\bar{A}}P_{\bar{B}}),$$

odakle zbog $P_S = 0$ sledi $P_G = -P_{\overline{S}}(P_{\overline{A}}P_B + P_AP_{\overline{B}} + 2P_{\overline{A}}P_{\overline{B}})$. Po dokazu teoreme 2.1.1. sledi $P_{\omega(G)} = -P_{\overline{S}}(P_{\overline{A}}P_B + P_AP_{\overline{B}})$, a kako je $\lambda_2(\omega(G)) \le 2 < \lambda_1(\omega(G))$, sledi i $P_{\omega(G)} \le 0$, a time i $P_G = P_{\omega(G)} - 2P_{\overline{S}}P_{\overline{A}}P_{\overline{B}} < 0$. Prema tome, važi $\lambda_2(G) < 2$, što je i trebalo dokazati. U familiji grafova \mathcal{F} možemo uvesti relaciju ekvivalencije na sledeći način: $(\forall G_1, G_2 \in \mathcal{F})$ \mathcal{F}) $G_1 \sim_{\omega} G_2 \Leftrightarrow \omega(G_1) \sim_{\alpha} \omega(G_2)$, jer je u tom slučaju $P_{G_1} = P_{\omega(G_1)} - 2P_{\bar{S}}P_{\bar{A}}P_{\bar{B}} = P_{\omega(G_2)} - 2P_{\bar{S}}P_{\bar{A}}P_{\bar{B}} = P_{G_2}$.

Uočimo podfamiliju \mathcal{F}' familije \mathcal{F} čiji su elementi grafovi oblika $G = C(S, A \cdot S', B)$, gde je S' proizvoljan Smitov graf.

Preslikavanje $\tau : \mathcal{F}' \to \mathcal{V}$ određeno je sa $\tau(G_1) = G$, gde je $G_1 = C(S, A \cdot S', B)$ (Slika 20.b) i G = G(S, A, B) (Slika 20.c), a S' proizvoljan Smitov graf. Pokazaćemo da ovo preslikavanje takođe čuva znak izraza $\lambda_2 - 2$.

Teorema 2.4. Neka je S' proizvoljan Smitov graf i neka je graf $G_1 \in \mathcal{F}'$, dat sa $G_1 = C(S, A \cdot S', B)$. Tada važi: $sgn(\lambda_2(G_1) - 2) = sgn(\lambda_2(\tau(G_1) - 2))$.

Dokaz: Kao i u prethodnim dokazima, prvo pretpostavljamo da je $\lambda_1(\overline{A}) \ge 2$ ili $\lambda_1(\overline{B}) \ge 2$. Tada sledi da je $\lambda_2(G_1) > 2$ i $\lambda_2(G) > 2$, a odatle i tražena jednakost.

Ako sada pretpostavimo da su indeksi podgrafova \overline{A} i \overline{B} manji od 2, na osnovu Leme 2.1. znamo da važi $\lambda_3(G) < 2 < \lambda_1(G)$, a dokazaćemo da iste relacije važe i za graf G_1 . Pošto za graf $G_1 - a$ važi $\lambda_1(\overline{A}) < 2$, $\lambda_1(\overline{S'}) < 2$ i $\lambda_2(G_1 - A \cdot S_1) < 2$, po Lemi 2.1. sledi da je $\lambda_3(G_1) < 2$, dok je indeks G_1 očigledno veći od dva. Uporedićemo sada $P_G = -P_S(P_A P_{\overline{B}} + P_{\overline{A}} P_B)$ (po dokazu Teoreme 2.1.) sa P_{G_1} , koji ćemo izračunati primenom Švenkovih lema, prethodno uvevši oznaku $M = G_1 - S$:

$$P_{G_1} = P_S P_M + P_{\bar{S}} (2P_M - P_{\bar{A}} P_{\bar{S}'} P_B - P_{\bar{B}} (P_A P_{\bar{S}'} + P_{\bar{A}} P_{S'} - 2P_{\bar{A}} P_{\bar{S}'}) - 2P_{\bar{B}} P_{\bar{A}} P_{\bar{S}'}) - 2P_{\bar{S}} P_M ,$$

tj. zbog $P_S = P_{S'} = 0$, biće $P_{G_1} = -P_{\overline{S}}P_{\overline{S}'}(P_A P_{\overline{B}} + P_{\overline{A}}P_B)$. Zbog $P_{\overline{S}}, P_{\overline{S}'} > 0$ važi sgn $P_{G_1} = \operatorname{sgn} P_G$, a odatle sledi i $\operatorname{sgn}(\lambda_2(G_1) - 2) = \operatorname{sgn}(\lambda_2(G) - 2)$, što je i trebalo dokazati.□ U familiji grafova \mathcal{F}' možemo, kao i malopre, uvesti relaciju ekvivalencije indukovanu preslikavanjem τ na sledeći način: $(\forall G_1, G_2 \in \mathcal{F}) \ G_1 \sim_{\tau} G_2 \Leftrightarrow \tau(G_1) = \tau(G_2)$, pri čemu bi klasa ekvivalencije grafa G bila jednaka $\tau^{-1}(\tau(G))$, a takođe možemo uvesti još jednu relaciju ekvivalencije sa: $(\forall G_1, G_2 \in \mathcal{F}) \ G_1 \sim_{\tau \alpha} G_2 \Leftrightarrow \tau(G_1) \sim_{\alpha} \tau(G_2)$.

Sa \mathcal{Q} ćemo označiti familiju povezanih grafova koji sadrže bar jedan četvorougao, na čije su čvorove oslonjeni korenski grafovi *S*, *A*, *B* i *S'* (sa korenima *x*, *a*, *b* i *y* respektivno), pri čemu su *S* i *S'* proizvoljni Smitovi grafovi (Slika 20.e). Za graf sa Slike 20.e) koristićemo oznaku C(S, A, B, S').

Preslikavanje $\varphi: \mathfrak{A} \to \mathfrak{V}$ određeno je sa $\varphi(G_1) = G_2$, gde je $G_1 = C(S, A, B, S')$, a $G_2 = G(S, A, B)$. Ovo preslikavanje ne čuva znak izraza $\lambda_2 - 2$, ali dovodi u nekim slučajevima u vezu znak izraza $\lambda_3 - 2$ grafa G_1 sa znakom izraza $\lambda_2 - 2$ njegove slike, što je preciznije objašnjeno sledećom teoremom.

Teorema 2.5. Neka je G = C(S, A, B, S') graf iz familije \mathcal{Q} . Tada je $P_G = 0$ i važe sledeće ekvivalencije:

1)
$$\lambda_2(\varphi(G)) \le 2 \Leftrightarrow \operatorname{sgn}(\lambda_2(\varphi(G)) - 2) = \operatorname{sgn}(\lambda_3(G) - 2) \land \lambda_2(G) = 2$$

2) $\lambda_2(\varphi(G)) > 2 \Leftrightarrow \lambda_2(G) > 2$.

Dokaz: Pre nego što pređemo na dokaze ekvivalencija, izračunaćemo $P_G(\lambda)$ korišćenjem Švenkovih lema (dok na osnovu dokaza Teoreme 2.1. znamo da je $P_{\varphi(G)}(\lambda) = P_S(\lambda)P_A(\lambda)P_B(\lambda) - P_{\overline{S}}(\lambda)(P_{\overline{A}}(\lambda)P_B(\lambda) + P_A(\lambda)P_{\overline{B}}(\lambda)),$ tj. $P_{\varphi(G)} = -P_{\overline{S}}(P_A P_{\overline{B}} + P_{\overline{A}} P_B),$ zbog $P_S = 0$):

$$\begin{split} P_{G}(\lambda) &= P_{S'}(\lambda)P_{\varphi(G)}(\lambda) + P_{\overline{S}'}(\lambda)(2P_{\varphi(G)}(\lambda) - P_{\overline{A}}(\lambda)(P_{S}(\lambda)P_{B}(\lambda) - P_{\overline{S}}(\lambda)P_{\overline{B}}(\lambda)) \\ &- P_{\overline{B}}(\lambda)(P_{S}(\lambda)P_{A}(\lambda) - P_{\overline{S}}(\lambda)P_{\overline{A}}(\lambda)) - 2P_{\overline{A}}(\lambda)P_{\overline{B}}(\lambda)P_{\overline{S}}(\lambda)) - 2P_{\overline{S}'}(\lambda)P_{\varphi(G)}(\lambda) \\ &= P_{S'}(\lambda)P_{\varphi(G)}(\lambda) - P_{\overline{S}'}(\lambda)P_{S}(\lambda)(P_{\overline{A}}(\lambda)P_{B}(\lambda) + P_{A}(\lambda)P_{\overline{B}}(\lambda)), \end{split}$$

tj. $P_G = 0$, zbog $P_S = P_{S'} = 0$.

1) \leftarrow Iz $\lambda_2(G) = 2$ sledi $\lambda_2(\varphi(G)) \leq 2$.

 $\begin{array}{c} \hline \end{array} \label{eq:pretpostavimo prvo da je $\lambda_2(\varphi(G)) < 2$. Tada je po Lemi 2.1. $\lambda_3(G) < 2$, jer za komponente grafa $G-y$ važi $\lambda_1(\overline{S}') < 2$ i $\lambda_2(\varphi(G)) < 2 < \lambda_1(\varphi(G))$, tj. važi i $\operatorname{sgn}(\lambda_2(\varphi(G)) - 2) = \operatorname{sgn}(\lambda_3(G) - 2) = -1$. Kako je i $\lambda_1(G) > 2$, a $P_G = 0$, sledi da je $\lambda_2(G) = 2$. }$

Pretpostavimo sada da je $\lambda_2(\varphi(G)) = 2$. Vidimo da su tada $\lambda_1(\overline{A}), \lambda_1(\overline{B}) < 2$, pa je po Lemi 2.1. $\lambda_3(\varphi(G)) < 2$ (jer je npr. $\lambda_1(\overline{A}) < 2$ i $\lambda_2(\varphi(G) - a) < 2 < \lambda_1(\varphi(G))$). Takođe po istoj lemi možemo dalje zaključiti da je $\lambda_4(G) < 2$, zbog $\lambda_3(\varphi(G)) < 2$ i $\lambda_1(\overline{S'}) < 2$, što znači da važi $\lambda_2(G) = 2$ ili $\lambda_3(G) = 2$. Uvedimo sada nove oznake: ako je polinom $P(\lambda)$ deljiv sa $\lambda - 2$, sa $Q(\lambda)$ označićemo polinom takav da važi $P(\lambda) = (\lambda - 2)Q(\lambda)$. Ako predstavimo $P_G(\lambda)$ na ovaj način, dobijamo

$$(\lambda - 2)Q_G(\lambda) = (\lambda - 2)Q_{S'}(\lambda)P_{\varphi(G)}(\lambda) - P_{\overline{S}'}(\lambda)(\lambda - 2)Q_S(\lambda)(P_{\overline{A}}(\lambda)P_B(\lambda) + P_A(\lambda)P_{\overline{B}}(\lambda)),$$

a posle deljenja sa $\lambda - 2$

$$Q_G(\lambda) = Q_{S'}(\lambda)P_{\varphi(G)}(\lambda) - P_{\bar{S}'}(\lambda)Q_S(\lambda)(P_{\bar{A}}(\lambda)P_B(\lambda) + P_A(\lambda)P_{\bar{B}}(\lambda))$$

Međutim, kako zbog $\lambda_2(\varphi(G)) = 2$ sledi $P_{\varphi(G)} = 0$, a odatle $P_{\bar{A}}P_B + P_A P_{\bar{B}} = 0$, dobijamo da je Q_G takođe jednako nuli, što znači da je $\lambda = 2$ dvostruka nula polinoma $P_G(\lambda)$, tj. da je $\lambda_2(G) = \lambda_3(G) = 2$. Dakle, važi da je $\lambda_2(G) = 2$ i $\operatorname{sgn}(\lambda_3(G) - 2) = \operatorname{sgn}(\lambda_2(\varphi(G)) - 2) = 0$, čime smo i u ovom slučaju dokazali traženu implikaciju.

2)
$$\implies$$
 Iz $\lambda_2(\varphi(G)) > 2$ sledi $\lambda_2(G) > 2$

E Neka je $\lambda_2(G) > 2$ i pretpostavimo suprotno, da je $\lambda_2(\varphi(G)) \le 2$. Tada je, po 1), $\lambda_2(G) = 2$, što je kontradikcija. U familiji grafova \mathscr{Q} možemo, kao i kod \mathscr{T} , uvesti dve relacije ekvivalencije. Jedna je indukovana preslikavanjem φ na sledeći način: $(\forall G_1, G_2 \in \mathscr{Q})$ $G_1 \sim_{\varphi} G_2 \Leftrightarrow \varphi(G_1) = \varphi(G_2)$, pri čemu bi klasa ekvivalencije grafa G bila jednaka $\varphi^{-1}(\varphi(G))$; a druga definisana sa $(\forall G_1, G_2 \in \mathscr{Q})$ $G_1 \sim_{\varphi \alpha} G_2 \Leftrightarrow \varphi(G_1) \sim_{\alpha} \varphi(G_2)$.

2.4. Primena preslikavanja φ i τ

Razmotrićemo ulogu preslikavanja τ i φ u određevanju maksimalnih refleksivnih kaktusa sa 4 i 5 kontura.

Primetimo prvo da je graf tipa T_0 α -ekvivalentan odgovarajućem RS-odlučivom grafu tipa $G_0 = G(C_m, C_n, C_p)$ (Slika 21.).

Slika 21. Primena α -preslikavanja na graf T_0

Pri pogledu na familije maksimalnih refleksivnih kaktusa sa 5 kontura (Slika 6.) vidimo da se grafovi familija Q_1 i Q_2 preslikavaju, pomoću φ , u grafove tipa T_0 , tj. G_0 , a takođe uočavamo da se između odgovarajućih grafova familija Q_1 i Q_2 može uspostaviti $\varphi \alpha$ -ekvivalencija. Grafovi familije T_1 preslikavaju se, pomoću τ , u grafove tipa T_0 , a grafovi familije T_2 u grafove tipa G_0 ili T_0 . Ponovo možemo uočiti ekvivalenciju, ovaj put $\tau \alpha$, između korespondentnih grafova familija T_1 i T_2 . Dakle, ove četiri familije mogu se opisati i kao inverzne slike grafova G_0 i T_0 pri φ i τ preslikavanju. Što se tiče familija maksimalnih refleksivnih kaktusa sa 4 konture, prvo ćemo posmatrati slučajeve kad je bar jedan čvor spoljašnjih kontura, različit od *c*-čvorova, opterećen. Možemo videti da se grafovi familije $H_1 - H_{48}$ pomoću φ preslikavaju u grafove A_2 (jedini *A*-graf sa slobodnom konturom), $B_1 - B_{11}$, $C_1 - C_{10}$ i $C_{16} - C_{41}$ ($C_{11} - C_{15}$ nisu iz familije \mathcal{V}). Pomoću τ se grafovi $J_1 - J_{11}$ preslikavaju u $B_1 - B_{11}$, $K_1 - K_{36}$ u $C_1 - C_{10}$ i $C_{16} - C_{41}$, $M_1 - M_{12}$ (bez M_2 i M_3 koji nemaju slobodnu konturu, pa nisu iz familije \mathcal{T}') u $B_1 - B_{11}$ (bez B_5), dok se grafovi iz familije $N_1 - N_{42}$ (sa izuzetkom N_{35} i $N_{37} - N_{41}$, koji nisu iz \mathcal{T}') preslikavaju u grafove $C_1 - C_{10}$ i $C_{17} - C_{41}$.

Zanimljivo je da se i kod pomenutih izuzetaka može pratiti jedna vrsta prelivanja, pa se graf M_3 može dovesti u vezu sa M_4 , N_{37} sa N_{18} , N_{38} sa N_{20} , N_{39} sa N_{16} , N_{40} sa N_{10} i N_{41} i N_{42} sa N_8 . Naime, možemo uočiti još neke relacije unutar užih klasa tricikličkih i bicikličkih kaktusa koje čuvaju znak izraza $\lambda_2 - 2$, koje će obuhvatiti i ove slučajeve. U sledećoj lemi dokazaćemo pomenutu osobinu za neke bicikličke, a u Lemi 2.3. za tricikličke slučajeve.

Lema 2.2. Neka su H_1 i H_2 biciklički grafovi s mostom (Slika 22.a) i b)) takvi da je $H_1 = G(C_m, P_i, C_n \cdot B)$ i $H_2 = G(C_m, A_i, C_n)$, gde je *B* korensko stablo, oba puta oslonjeno u svom korenu, a stablo A_i jednako koalescenciji $P_i \cdot B$ (Slika 22.c)) nastaloj oslanjanjem korena stabla *B* na čvor *d*. Tada važi: $sgn(\lambda_2(H_1)-2) = sgn(\lambda_2(H_2)-2)$.

Slika 22. Grafovi H_1 , H_2 i A_i

Dokaz: Iz $\lambda_1(\overline{B}) \ge 2$ sledi $\operatorname{sgn}(\lambda_2(H_1)-2) = \operatorname{sgn}(\lambda_2(H_2)-2) = 1$. Ako je $\lambda_1(\overline{B}) < 2$, onda po RS-teoremi sledi $\lambda_2(H_1-c_2) < 2$, tj. $\lambda_3(H_1) < 2 < \lambda_1(H_1)$; a takođe i $\lambda_2(H_2-d) < 2$, tj. $\lambda_3(H_2) < 2 < \lambda_1(H_2)$. Zbog prethodnog, važi $\operatorname{sgn}(P_{H_i}(2)) = \operatorname{sgn}(\lambda_2(H_i)-2)$ (i=1,2), a kako je $P_{H_1} = -mnP_A = P_{H_2}$, sledi dokaz tvrđenja.

Lema 2.3. Neka su G_1 i G_2 triciklički grafovi (Slika 23.a) i b)) takvi da je $G_1 = C(C_m \cdot P_{i+1}, C_n \cdot B, X)$, tj. $G_2 = C(C_m \cdot A_{i+1}, C_n, X)$, pri čemu je *B* korensko stablo, a stablo A_{i+1} jednako koalescenciji $P_{i+1} \cdot B$ formiranoj u čvoru *d*. Tada važi : $sgn(\lambda_2(G_1)-2) = sgn(\lambda_2(G_2)-2)$.

Slika 23. Grafovi G_1 , G_2 i G_3

Dokaz: Primetimo prvo da je $\overline{A}_{i+1} = A_i$, kao i da je $G_i - X = H_i$, i = 1, 2 (Slika 23.). Iz $\lambda_1(\overline{X}) \ge 2$ ili iz $\lambda_2(A_i) \ge 2$ sledi $\operatorname{sgn}(\lambda_2(G_1) - 2) = \operatorname{sgn}(\lambda_2(G_2) - 2) = 1$. Ako je $\lambda_1(\overline{X}) < 2$ i $\lambda_1(A_i) < 2$, sledi $P_{A_i} > 2$, pa je po prethodnoj lemi $P_{H_i} < 0$, gde je $H_i = G_i - X$, i = 1, 2, iz čega dalje sledi $\lambda_2(H_i) < 2$, tj. $\lambda_2(G_i - c_3) < 2$ i $\lambda_3(G_i) < 2$. Uobičajenom primenom Švenkovih lema dobijamo $P_{G_1} = P_{G_2} = -mn(P_X P_{A_i} + P_{\overline{X}} P_{A_{i+1}})$, iz čega sledi $\operatorname{sgn}(\lambda_2(G_1) - 2) = \operatorname{sgn}(\lambda_2(G_2) - 2)$.

Napomenimo da prethodne dve leme važe i u opštijem slučaju, gde se umesto kontura C_m i C_n pojavljuju proizvoljni Smitovi grafovi (dokazi su analogni prethodnim).

Grafovi M_2 i N_{35} predstavljaju "prave" izuzetke, jer se tek njihovi pravi podgrafovi mogu preslikati sa τ u B_5 , tj. C_{16} . Ovde napominjemo da za svaki graf tipa grafa G_3 (Slika 23.c) važi da je $P_{G_3} = 0$, tako da se u slučaju da je ovakav graf refleksivan, zbog $\lambda_2(G_3 - X) = 2$ nameće ograničenje da je $\lambda_1(\overline{X}) < 2$, kao i $\lambda_2(G_3 - c_1), \lambda_2(G_3 - c_2) \le 2$, što znači da su odgovarajući biciklički podgrafovi koji ostaju kad se odstrani c_1 ili c_2 takođe refleksivni, a onda bismo mogli posmatrati njima β -ekvivalentne RS-odlučive grafove i na taj način doći do M_2 i N_{35} , kao i do nekih potklasa klase R_1 refleksivnih tricikličkih grafova, što će se videti u trećoj glavi.

Grafovi familija $I_1 - I_9$ i $L_1 - L_{12}$ nisu iz familije \mathcal{F}' , osim grafova I_4 i L_7 , koji se, pomoću τ , preslikavaju u A_2 .

Pređimo na familije maksimalnih refleksivnih kaktusa sa 4 konture kod kojih su dodatno opterećeni samo *c*-čvorovi. Kaktusi sa Slike 8.a) preslikavaju se, pomoću φ , u T_0 , a oni sa Slike 8.b) u familiju $D_1 - D_{35}$. Kaktusi sa Slike 9. i 10.a) preslikavaju se, pomoću τ , takođe u grafove $D_1 - D_{35}$, dok oni sa Slike 10.b) i 11. ne pripadaju familiji \mathcal{I}' .

Vidimo da se i kod određivanja maksimalnih refleksivnih kaktusa sa 4 ili 5 kontura veliki deo rezultata može opisati korišćenjem φ i τ preslikavanja.

3. Neke klase tricikličkih refleksivnih kaktusa

U ovoj glavi navodimo rezultate koji se tiču određivanja tricikličkih refleksivnih kaktusa klasa R_1 , R_2 i R_3 . U prvom delu navode se prethodni parcijalni rezultati koji se tiču ovih klasa, kao i pomoćna tvrđenja koja su od značaja za klase R_1 i R_3 ; u drugom delu određeni su svi maksimalni refleksivni kaktusi klase R_1 ; u trećem su opisane neke klase maksimalnih refleksivnih kaktusa klase R_2 ; a u četvrtom su određeni svi maksimalni refleksivni kaktusi klase R_3 .

3.1. Prelivanje parova Smitovih stabala

Jedna potklasa grafova klase R_1 opisana je u [30] i [39], pri čemu je uočeno prelivanje para Smitovih stabala. Prvo navodimo teoremu koja se odnosi na ovo prelivanje, a zatim teoremu koja opisuje dobijenu potklasu.

Teorema 3.1. [39] Neka je dat uniciklički kaktus G (Slika 24.a)) čiji su svi čvorovi konture, osim c, stepena 2, takav da su stabla (Slika 24.b), koja su dobijena identifikacijom čvorova x i y u grafovima S_i i S'_i (i = 1, 2), Smitova stabla. Ako se ne može primeniti RS-teorema, onda su svi ovakvi grafovi maksimalni refleksivni unutar klase unicikličkih grafova i za sve njih važi $\lambda_2(G) = 2$.

Slika 24. Prelivanje para Smitovih stabala u unicikličkom kaktusu G

Dokaz: Uvedimo oznake $G_1 = S_1 \cdot S_2$ (koalescencija je u čvoru x), $G'_1 = S'_1 \cdot S'_2$ (koalescencija je u y); zatim $\Sigma_i = \sum_{d \in S_i \cap Adjx} P_{S_i - x - d}$ i $\Sigma'_i = \sum_{d \in S_i' \cap Adjy} P_{S_i' - y - d}$, i = 1, 2, gde Adjx, tj. Adjy, predstavljaju skupove čvorova susednih čvoru x, tj. y; kao i $P_i = P_{S_i - x}$, $P'_i = P_{S_i' - y}$. Primenom Švenkovih lema na čvor c grafa G dobijamo:

$$P_{G} = 2mP_{G_{1}}P_{G_{2}} - 2(m-1)P_{G_{1}}P_{G_{2}} - mP_{G_{1}}P_{G_{2}-y} - mP_{G_{1}-x}P_{G_{2}} - 2P_{G_{1}}P_{G_{2}} = -m(P_{G_{1}}P_{G_{2}-y} + P_{G_{2}}P_{G_{1}-x})$$

a kako je $P_{G_1} = 2P_1P_2 - P_1\Sigma_2 - P_2\Sigma_1$, tj. $P_{G_1'} = 2P_1'P_2' - P_1'\Sigma_2' - P_2'\Sigma_1'$, biće:

$$P_{G} = -m[(2P_{1}P_{2} - P_{1}\Sigma_{2} - P_{2}\Sigma_{1})P_{1}'P_{2}' + (2P_{1}'P_{2}' - P_{1}'\Sigma_{2}' - P_{2}'\Sigma_{1}')P_{1}P_{2}]$$

= $-m(4P_{1}P_{2}P_{1}'P_{2}' - \Sigma_{1}P_{2}P_{1}'P_{2}' - P_{1}\Sigma_{2}P_{1}'P_{2}' - P_{1}P_{2}\Sigma_{1}'P_{2}' - P_{1}P_{2}P_{1}'\Sigma_{2}'),$

a kako je $2P_iP'_i - P_i\Sigma'_i - \Sigma_iP'_i = 0$, jer su odgovarajući grafovi sa Slike 24.b) Smitovi, dobijamo $P_G = 0$.

S druge strane, ako je neki od grafova sa Slike 24.b), npr. za i = 1, u stvari nadgraf Smitovog stabla dobijen dodavanjem viseće grane na Smitovo stablo u bilo kom čvoru, tada će važiti $2P_1P'_1 - P_1\Sigma'_1 - \Sigma_1P'_1 < 0$, što će dati $P_G > 0$; a ako je neki od grafova sa Slike 24.b), npr. za i = 1, pravi podgraf nekog Smitovog stabla, biće $2P_1P'_1 - P_1\Sigma'_1 - \Sigma_1P'_1 > 0$, tj. $P_G < 0$. Iz ovakve diskusije sledi da je $\operatorname{sgn}(P_G) = \operatorname{sgn}(\lambda_2(G) - 2)$, čime je teorema dokazana.

Očigledno je da je unicikliči graf *G* zapravo α - ekvivalentan grafu $G(C_m, S_1 \cdot S_1', S_2 \cdot S_2')$ za koji važi $\lambda_2 = 2$, koji je RS-odlučiv i maksimalni refleksivni graf u okviru klase \mathcal{U} .

Teorema 3.2. [39] Neka triciklički kaktus ima cikličku strukturu kao na Slici 25.a) (dve konture proizvoljne dužine su dodate na nesusedne čvorove četvorougla c_1 i c_2) i neka se par Smitovih stabala preliva između dva preostala nesusedna čvora x i y, kao u prethodnoj teoremi. Tada su svi dobijeni grafovi maksimalni refleksivni kaktusi.

Slika 25. Prelivanje parova Smitovih stabala

Dokaz: Po teoremi o preplitanju, za graf koji se sastoji od kontura C_m i C_n , koje su povezane putem dužine 2 (npr. c_1xc_2), važi $\lambda_2 = 2$. Dodavanjem čvora y povezanog sa čvorovima c_1 i c_2 dobija se graf za koji takođe važi $\lambda_2 = 2$, ali dok prilikom daljeg dodavanja proizvoljnih stabala na x i y ostaje P = 0, ne mora da ostane $\lambda_2 = 2$. Međutim, može se proveriti da za sve grafove sa Slike 25.a) važi $\lambda_2 = 2$.

Ako bismo ovakav graf proširili dodavanjem nove grane na neki od čvorova spoljašnjih kontura, dobili bismo graf sa osobinom $\lambda_2 > 2$, jer se po uklanjanju npr. čvora x već dobija graf sa takvom osobinom, takođe po Teoremi o preplitanju. Ako bi se nove grana dodala na neki od čvorova koji nisu sa spoljašnjih kontura, dobio bi se graf za čiji podgraf po Teoremi 3.1. važi $\lambda_2 > 2$. Dakle, grafovi sa Slike 25.a) su maksimalni refleksivni grafovi.

Kao i malopre, uočava se da se graf sa Slike 25.a) može preslikati pomoću φ u npr. graf $G(C_m, S_1 \cdot S_2, S_1' \cdot S_2')$, koji je α - ekvivalentan grafu $G(C_m, S_1 \cdot S_1', S_2 \cdot S_2')$.

Sličan rezultat, sa korišćenjem osobina prelivanja para Smitovih stabala, dobijen je i za grafove klase R_2 u [39].

Teorema 3.3. [39] Neka se graf G sastoji od dve konture proizvoljne dužine oslonjene na dva čvora trougla i neka se parovi Smitovih stabala prelivaju između čvorova c_2 i c_3 (Slika 25.b). Tada je G maksimalan refleksivan kaktus, sa sledećim izuzecima: 1) na čvor c_3 dodato je celo Smitovo stablo *S*, a drugo Smitovo stablo tipa W_n se posle cepanja preliva između čvorova c_2 i c_3 , kao na Slici 26.; tada su tri prikazane familije grafova maksimalni refleksivni kaktusi ;

Slika 26. Izuzeci sa W_n

2) posle cepanja Smitovih stabala u oba slučaja dobija se podstablo S_i i K_2 (i = 1, 2), pri čemu su oba grafa K_2 dodata na čvor c_2 (Slika 27.); tada su tri prikazane familije grafova maksimalni refleksivni kaktusi.

 $(l_1 \ge 0)$

Slika 27. Izuzeci sa $S_i \cdot K_2$

Dokaz: Uvedimo oznake: $P_{S_i-c_2} = \overline{P}_i$, $P_{S_i'-c_3} = \overline{P}_i'$, $\sum_{v \in Adjc_2 \cap S_i} P_{S_i-c_2-v} = \Sigma_i$ i

 $\sum_{v \in Adjc_3 \cap S_i'} P_{S_i'-c_3-v} = \Sigma_i' \quad (i = 1, 2).$ Primenom Švenkovih lema na graf G sa Slike 25.b)

posle sređivanja izraza dobijamo:

$$P_G = mn(-4\overline{P}_1\overline{P}_2\overline{P}_1'\overline{P}_2' + \Sigma_1\overline{P}_2\overline{P}_1'\overline{P}_2' + \overline{P}_1\Sigma_2\overline{P}_1'\overline{P}_2' - \overline{P}_1\overline{P}_2\Sigma_1'\overline{P}_2' - \overline{P}_1\overline{P}_2\overline{P}_1'\Sigma_2') ,$$

tj. zbog $2\overline{P_i}\overline{P'_i} - \overline{P_i}\Sigma'_i - \Sigma_i\overline{P'_i} = 0$ za i = 1, 2, jer su S_1 i S_2 Smitova stabla, sledi $P_G = 0$ i $\lambda_2(G) = 2$. S druge strane, ako bi npr. stablo S_1 bilo nadgraf Smitovog stabla, dobijeno dodavanjem viseće grane u proizvoljnom čvoru, sledilo bi $2\overline{P_1}\overline{P_1} - \overline{P_1}\Sigma_1' - \Sigma_1\overline{P_1}' < 0$, a time i $P_G > 0$, tj. $\lambda_2(G) > 2$. Prema tome, G ne može da se proširuje ni u jednom od čvorova stabala S_i , S'_i (i = 1, 2), a da pri tome ostane refleksivan. Dalje razmatramo da li se G može proširiti (a ostati refleksivan) dodavanjem viseće grane u čvoru c_1 do grafa E, ili do sličnog grafa dodavanjem viseće grane u nekom od čvorova spoljašnjih kontura različitom od c-čvorova. Ovde detaljnije razmatramo graf E, a analogno tome, pokazuje se da se nova grana ne može da se doda ni na čvor c_1 .

Za graf *E*, koji je dobijen proširivanjem *G* u čvoru c_1 visećom granom, može da važi $\lambda_2 > 2$ ili $\lambda_2 = 2$, u zavisnosti od toga da li za unicikličku komponentu E_1 grafa $E - c_1$ važi $P_{E_1} < 0$ ili $P_{E_1} = 0$. Graf *E* ne može da sadrži dva cela Smitova stabla oslonjena na c_3 , a da ostane refleksivan (po RS-teoremi sledilo bi $P_{E_1} < 0$), niti može da sadrži celo Smitovo stablo oslonjeno na c_2 , zbog Teoreme 1.4., pa zato posmatramo slučajeve kad je celo Smitovo stablo oslonjeno na c_3 , a drugo se preliva između c_2 i c_3 (označimo takav graf sa E_s), ili kad se oba Smitova stabla prelivaju između c_2 i c_3 (graf *E*).

U prvom slučaju, posmatramo unicikličku komponentu E_2 grafa $E_s - c_1$ i uvodeći oznaku $P_{S-c_3} = \overline{P}$, primenom Hajlbronerove leme dobijamo $P_{E_2} = n\overline{P}(\Sigma_1\Sigma'_1 - \overline{P_1P_1}) \leq 0$. Međutim, za sva Smitova stabla vrednost izraza $\Sigma_1\Sigma'_1 - \overline{P_1P_1}'$ je negativna, osim u slučaju kad su S_1 i S_1' delovi stabla W_n , takvi da je $\Sigma_1 = \Sigma'_1 = \overline{P_1} = \overline{P_1}' = 4$. U tom slučaju, dalje proširivanje čuva osobinu P = 0, ali smo ograničeni rezultatima Teoreme 1.4. i ostalim rezultatima iz [44] tako da su za osobinu $\lambda_2 = 2$ maksimalni grafovi prikazani na Slici 26. U drugom slučaju, kad se dva Smitova stabla prelivaju između c_2 i c_3 , primenom Hajlbronerove leme dobijamo:

$$\begin{split} P_{E_1} &= -n(2\bar{P}_1\bar{P}_2\Sigma_1'\Sigma_2' - \bar{P}_1\bar{P}_1'\Sigma_2\Sigma_2' - \bar{P}_2\bar{P}_2'\Sigma_1\Sigma_1' + \bar{P}_1\bar{P}_1'\bar{P}_2\bar{P}_2') \\ &= -n[(\bar{P}_1\bar{P}_1' - \Sigma_1\Sigma_1')(\bar{P}_2\bar{P}_2' - \Sigma_2\Sigma_2') + \Sigma_1'\Sigma_2'(2\bar{P}_1\bar{P}_2 - \Sigma_1\Sigma_2)]. \end{split}$$

Lako se proverava da za proizvoljno cepanje Smitovog stabla za npr. S_1 važi $\overline{P_1} \ge \frac{3}{4}\Sigma_1$, osim u slučaju kad je $S_1' = K_2$, a tada je $\overline{P_1} = \frac{2}{3}\Sigma_1$. Prema tome, $2\overline{P_1}\overline{P_2} > \Sigma_1\Sigma_2$ važi uvek, osim u slučaju kad se cepanjem obeju Smitovih stabala dobija S_1 (tj. S_2) i K_2 . S druge strane, videli smo da je $(\overline{P_1}\overline{P_1'} - \Sigma_1\Sigma_1')(\overline{P_2}\overline{P_2'} - \Sigma_2\Sigma_2') \ge 0$, s tim što jednakost važi jedino kad je jedno od Smitovih stabala baš W_n . Iz ovoga zaključujemo da je $P_{E_1} < 0$, tj. $\lambda_2(E) > 2$. U slučaju da je $S_1' = S_2' = K_2$, dobija se da je $P_{E_1} = 0$, a dalja proširivanja, kao i u prethodnom slučaju dovode jedino do izuzetaka prikazanih na Slici 27. \Box

I ovde vidimo da su grafovi sa Slike 25.b) $\tau \alpha$ -ekvivalentni sa RS-odlučivim maksimalnim refleksivnim grafovima, dok se kod izuzetaka navedenih u ovoj teoremi slično izuzecima M_2 i N_{35} iz odeljka 2.4. može primetiti da su njihovi biciklički podgrafovi koji se dobijaju kad se odstrani čvor $c_3 \alpha$ -ekvivalentni (Slike 26.a) i 27.a)) tj. β -ekvivalentni (Slike 26.b) i c) i 27.b) i c)) određenim RS-odlučivim grafovima.

Ovi parcijalni rezultati pokazaće se značajni i za opšti slučaj, tj. za određivanje svih maksimalnih refleksivnih grafova datih klasa.

3.2. Klasa *R*₁

Klasu R_1 čine triciklički grafovi tipa grafa G (Slika 28.) čija je centralna kontura četvorougao, na čije su nesusedne čvorove c_1 i c_2 oslonjene dve spoljašnje konture

dužine *m* i *n*, C_m i C_n , dok su na preostale čvorove centralne konture *x*, tj. *y*, oslonjena korenska stabla *A*, tj. *B* (koja mogu biti i trivijalna), čiji su korenovi *a*, tj. *b*, identifikovani sa čvorovima *x*, tj. *y*. Primetimo da ako je graf klase R_1 , on je tipa $C(C_m, A, B, C_n)$, pa po Teoremi 2.5. sledi $P_G = 0$.

Slika 28. Graf G

Zbog toga, ispitivanje da li je graf klase R_1 refleksivan ili ne, ne može da se vrši analizom znaka karakterističnog polinoma u tački 2, što je inače čest instrument. S druge strane, ako definišemo klasu v_1 kao potklasu klase v, koja obuhvata sve unicikličke grafove klase v u kojima je Smitov graf *S* jednak konturi, problem se svodi na određivanje maksimalnih refleksivnih grafova u klasi v_1 , o čemu govori sledeća teorema.

Teorema 3.4. Neka je G graf klase R_1 , a graf $H = \alpha(\varphi(G))$ (Slika 29.a), gde je podgraf C grafa H koalescencija korenskih stabala A i B (Slika 29.b) pri čemu su korenovi a i b identifikovani sa čvorom x. Graf H je maksimalan refleksivan graf u klasi \mathcal{V}_1 ako i samo ako je graf G maksimalan refleksivan graf u klasi R_1 .

Slika 29. Grafovi H i C

Dokaz: E Neka je *G* maksimalni refleksivni graf klase R_1 . Tada je *H* refleksivan jer je α -ekvivalentan pravom podgrafu $\varphi(G)$ grafa G. Ako *H* ne bi bio maksimalan u klasi \mathcal{V}_1 , u toj klasi postojao bi njegov pravi nadgraf H^+ , takođe refleksivan; međutim, postojao bi graf G^+ iz klase R_1 takav da je $H^+ = \alpha(\varphi(G^+))$ koji je pravi nadgraf grafa *G*, pa on ne bi bio refleksivan, a onda bi iz $\lambda_2(G^+) > 2$ sledilo $\lambda_2(\varphi(G^+)) > 2$ (po Teoremi 2.5.), tj. $\lambda_2(\alpha(\varphi(G^+))) = \lambda_2(H^+) > 2$ (po Teoremi 2.1.), što dovodi do kontradikcije.

Ako je *H* maksimalni refleksivni graf u klasi \mathcal{V}_1 , onda i polazni graf *G* mora biti refleksivan; u protivnom, iz $\lambda_2(G) > 2$ sledilo bi $\lambda_2(H) > 2$ (Teoreme 2.5. i 2.1.). S druge strane, ako *G* nije maksimalan u klasi R_1 , onda postoji njegov pravi nadgraf G^+ u istoj klasi, koji je refleksivan. Zbog RS-teoreme, i u G^+ konture C_m i C_n su slobodne, pa je odgovarajući H^+ , koji je jednak $\alpha(\varphi(G^+))$, pravi nadgraf grafa *H* i refleksivan graf iz \mathcal{V}_1 , što je ponovo kontradikcija.

Prema prethodnim rezultatima [39] znamo da u slučaju da je podgraf C grafa H jednak koalescenciji dva Smitova stabla ($C = S_1 \cdot S_2$), onda je graf H maksimalan refleksivan u klasi \mathcal{V}_1 . U preostalim slučajevima, ako je H maksimalan refleksivan graf u klasi \mathcal{V}_1 , njegov podgraf C mora biti nadgraf Smitovog stabla (u protivnom H bi bio pravi podgraf nekog već poznatog maksimalnog grafa). Međutim, zbog RS-teoreme, komponente grafa \overline{C} moraju biti pravi podgrafovi Smitovih stabala.

Napomenimo da ćemo ubuduće, zbog skraćivanja, reći za graf da je tipa:

- S, ako je on jedno od Smitovih stabala,
- PS, ako je on pravi podgraf bar jednog od Smitovih stabala,
- NS, ako je on pravi nadgraf bar jednog od Smitovih stabala
- SS, ako je on koalescencija neka dva Smitova stabla,
- PSS, ako je on pravi podgraf bar jedne koalescencije neka dva Smitova stabla,
- NSS, ako je on pravi nadgraf bar jedne koalescencije neka dva Smitova stabla.

Na osnovu prethodnog, tvrdimo da važi sledeća teorema.

Teorema 3.5. Graf G (Slika 28.) je maksimalan refleksivan graf u klasi R_1 ako i samo ako za graf $C = A \cdot B$, koji je nastao identifikovanjem korenskih čvorova stabala A i B, važi:

1) $P_C + 2P_{\overline{C}} \ge 0$ (kraće, $c \ge 0$)

2) C je tipa NS

3) svaka komponenta grafa \overline{C} je tipa PS.

Po prethodnoj teoremi, problem određivanja maksimalnih refleksivnih grafova klase R_1 svodi se na odredjivanje maksimalnih stabala C za koje važe uslovi 1) – 3), kojima nadalje možemo dodati i uslov

4) C nije tipa SS,

jer izuzimamo slučajeve koji su već opisani.

Neka graf C ispunjava uslove 1) – 4). Ako je potrebno da ispitamo da li se takav graf može proširiti u čvoru x, a da prilikom toga i dalje zadovoljava uslove 1)-4), dovoljno je da posmatramo najmanje moguće proširenje, tj. graf C', koji je dobijen proširivanjem grafa C jednom visećom granom u čvoru x. Primenom Švenkovih lema na čvor x novog grafa, dobija se:

$$c' = P_{C'} + 2P_{\overline{C'}} = 2P_C - P_{\overline{C}} + 4P_{\overline{C}} = 2c - P_{\overline{C}},$$

pa se jednostavnim ispitivanjem znaka poslednjeg izraza ispituje i mogućnost proširenja. Očigledno je da, ako za graf C važi c = 0, on se ne može proširiti u čvoru xtako da važe uslovi 1) – 4), jer su komponente grafa \overline{C} pravi podgrafovi Smitovih stabala, pa bi važilo c' < 0.

Određivanje vrednosti c i c' kao i odgovarajućih vrednosti P i \overline{P} u daljem tekstu vršićemo koristeći Švenkove leme i njihove posledice, a pri tome ćemo koristiti i poznate rezultate za jednostavne grafove, date u Lemi 3.1.

Lema 3.1. [44] Neka su $G_1 - G_4$ grafovi prikazani na Slici 30. Tada važi: 1) $P_{G_1}(2) = k + 2, 2$ $P_{G_2}(2) = 4, 3$ $P_{G_3}(2) = -klm + k + l + m + 2, 4$ $P_{G_4}(2) = 4(1-kl)$.

Slika 30. Grafovi $G_1 - G_4$

Neka graf *C* zadovoljava uslove 1) – 4). S obzirom da su svi pravi podgrafovi Smitovih stabala Kokseter-Dinkinovi grafovi (Slika 2.), ispitaćemo pod kojim uslovima grafovi E_8, E_7, E_6, D_n, A_n mogu biti komponente grafa \overline{C} . Čvorove grafa *C* koji su susedni čvoru *x* zvaćemo crni čvorovi; na njih se oslanjaju komponente grafa \overline{C} . Sa $\hat{E}_8, \hat{E}_7, \hat{E}_6, \hat{D}_n, \hat{A}_n$ označićemo, respektivno, grafove E_8, E_7, E_6, D_n, A_n proširene jednom visećom granom. Ako je kraj te viseće grane čvor *x*, sa npr. \hat{E}_8^i označićemo korenski graf \hat{E}_8 , u kome je crni čvor x_i koren.

U Tabelama 1.a)-b) predstavićemo tip grafa (S, PS ili NS) za sve opisane proširene grafove, gde je sa v označen crni čvor. Napomenimo da su grafovi \hat{E}_6^4 , \hat{E}_6^5 , \hat{D}_4^4 i \hat{A}_n^{i+1} (i > j) izomorfni sa \hat{E}_6^2 , \hat{E}_6^1 , \hat{D}_4^1 i \hat{A}_n^{j+1} respektivno, pa ih izostavljamo iz daljeg razmatranja.

Tabela 1.a) Tipovi grafova $\hat{E}_8, \hat{E}_7, \hat{E}_6$

v	x_1	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	x_6	<i>x</i> ₇	x_8
\hat{E}_8	S	NS	NS	NS	NS	NS	NS	NS
\hat{E}_7	PS	NS	NS	NS	NS	S	NS	/
\hat{E}_6	PS	NS	NS	/	/	S	/	/

v		x_{i+1}		x_n (r	$n \ge 5)$
\hat{D}	1	i = 0	PS		
$\binom{-n}{n}$		i = 1	S	<i>n</i> = 5	S
$(n \ge 1)$	<i>i</i> = 2,,	$n-3 \ (n \ge 5)$	NS	<i>n</i> > 5	NS
Â	i	= 0,1	PS		
$n = i + i + 1 \ge 2$.		$2 \le j \le 4$	PS		
$i \leq j$	<i>i</i> = 2	i=2 $j=5$			
		<i>j</i> > 5	NS] ,	/
	<i>i</i> _ 2	<i>j</i> = 3	S		
	i = 5	j > 3	NS		
		i > 3	NS		

Tabela 1.b) Tipovi grafova \hat{D}_n, \hat{A}_n

Stav 3.1. Uslovi 1), 3) i 4) ispunjeni su ako i samo ako je *C* jednak jednom od grafova: \hat{E}_{8}^{i} , za $i \in \{1,7\}$; \hat{E}_{7}^{i} , za $i \in \{1,2,6,7\}$; \hat{E}_{6}^{i} , za $i \in \{1,2,6\}$; \hat{D}_{n}^{i+1} , za $i \in \{0,1,2,3\}$, $n \ge \max\{i+3,4\}$; \hat{D}_{n}^{n} , za $5 \le n \le 16$; \hat{A}_{n}^{i+1} , za $i \in \{0,1,2,3\}$ $(j \ge i)$, i = 4 $(4 \le j \le 19)$, i = 5 $(5 \le j \le 11)$, i = 6 $(6 \le j \le 8)$ ili i = 7 (j = 7).

Dokaz: U Tabelama 2.a) i b) ćemo predstaviti vrednosti izraza P i c u zavisnosti od korena v posmatranog korenskog grafa, a u poslednjim kolonama vrednost \overline{P} za dati graf (ona ne zavisi od korena v). Vrednosti P i \overline{P} računamo primenom Švenkove leme na čvor x.

Tabela 2.a) *P*, *c* i \overline{P} za grafove $\hat{E}_8, \hat{E}_7, \hat{E}_6$

v		x_1	<i>x</i> ₂	<i>x</i> ₃	x_4	<i>x</i> ₅	<i>x</i> ₆	<i>x</i> ₇	<i>x</i> ₈	\overline{P}
\hat{F}	P	0	-4	-10	-18	-28	-12	-2	-6	1
L_8	С	2	-2	-8	-16	-26	-10	0	-4	1
\hat{F}	P	1	-4	-11	-20	-8	0	-3	/	2
\boldsymbol{L}_7	С	5	0	-7	-16	-4	4	1	/	2
\hat{F}	P	2	-4	-12	/	/	0			2
<i>L</i> ₆	С	8	2	-6	/	/	6	/	/	3

Tabela 2.b) *P*, *c* i \overline{P} za grafove \hat{D}_n , \hat{A}_n

	V	X_{i+1}	x_n	\overline{P}
D	P	4(1-i)(i=0,,n-3)	8-n	4
⁻ n	С	4(3-i) (<i>i</i> = 0,, <i>n</i> -3)	16 <i>-n</i>	4
Â	Р	-ij+i+j+3 ($i=0,,n-1$; $j=n-i-1$)	/	$i \perp i \perp 2$
'n	С	-ij+3i+3j+7 ($i=0,,n-1$; $j=n-i-1$)	/	<i>i</i> + <i>J</i> + <i>Z</i>

Iz tabela sledi tvrđenje.□

Prema prethodnom, vidimo da grafovi C navedeni u Stavu 3.1. mogu biti:

- tipa S: \hat{E}_{8}^{1} , \hat{E}_{7}^{6} , \hat{E}_{6}^{6} , \hat{D}_{n}^{2} , \hat{D}_{8}^{8} , \hat{A}_{8}^{3} , \hat{A}_{7}^{4} ;
 tipa NS: \hat{E}_{8}^{7} , \hat{E}_{7}^{2} , \hat{E}_{7}^{7} , \hat{E}_{6}^{2} , \hat{D}_{n}^{3} $(n \ge 5)$, \hat{D}_{n}^{4} $(n \ge 6)$, \hat{D}_{n}^{n} (n = 9, ..., 16), \hat{A}_{n}^{3} $(j \ge 6)$, \hat{A}_{n}^{4} $(j \ge 4)$, \hat{A}_{n}^{i+1} za i = 4 $(4 \le j \le 19)$, i = 5 $(5 \le j \le 11)$, i = 6 $(6 \le j \le 8)$ i i = 7 (j = 7); ili
- tipa PS: \hat{E}_{7}^{1} , \hat{E}_{6}^{1} , \hat{D}_{n}^{1} , \hat{D}_{n}^{n} ($5 \le n \le 7$), \hat{A}_{n}^{1} , \hat{A}_{n}^{2} i \hat{A}_{n}^{3} (j = 2, 3, 4); pri čemu važi $\hat{E}_{7}^{1} = E_{8}^{1}$ (gde smo sa E_{8}^{1} označili korenski graf E_{8} u kome je čvor x_{1} identifikovan sa čvorom x), $\hat{E}_{6}^{1} = E_{7}^{1}$, $\hat{D}_{n}^{1} = D_{n+1}^{1}$, $\hat{D}_{5}^{5} = E_{6}^{1}$, $\hat{D}_{6}^{6} = E_{7}^{6}$, $\hat{D}_{7}^{7} = E_{8}^{7}$, $\hat{A}_{n}^{1} = A_{n+1}^{1}$, $\hat{A}_{n}^{2} = D_{n}^{n}$, $\hat{A}_{5}^{3} = E_{6}^{6}$, $\hat{A}_{6}^{3} = E_{7}^{7}$ i $\hat{A}_{7}^{3} = E_{8}^{8}$.

U slučaju da je graf C iz Stava 3.1. tipa S, on se uvek može proširiti do grafa tipa SS, a ovaj slučaj je već opisan.

Neka je graf *C* iz Stava 3.1. tipa NS. U nekim slučajevima već on sam može biti maksimalan graf za uslove 1) – 4), a u drugim slučajevima *C* se može proširiti do maksimalnog dodavanjem novih stabala, ali se to dodavanje može izvršiti samo u čvoru *x*. Naime, ako bi se u nekom drugom čvoru dodala bar viseća grana, proširio bi se noseći graf \overline{C} , pa bi on ili postao graf tipa NS, ili bi promenio vrstu (npr. ako se graf \hat{E}_7^2 proširi dodavanjem viseće grane na čvor x_1 , dobija se \hat{E}_8^2 - tj. noseći graf E_7^2 menja se u E_8^2).

U Stavu 3.2. određeni su svi grafovi C iz Stava 3.1. koji su maksimalni za uslove 1)-4).

Stav 3.2. Grafovi $Q_1 = \hat{E}_8^7$, $Q_2 = \hat{E}_7^2$, $Q_3 = \hat{D}_n^4$ $(n \ge 6)$, $Q_4 = \hat{D}_{16}^{16}$, $Q_5 = \hat{A}_{24}^5$, $Q_6 = \hat{A}_{17}^6$, $Q_7 = \hat{A}_{15}^7$ i $Q_8 = \hat{A}_{15}^8$ su maksimalni za uslove 1)-4).

Dokaz: U svim navedenim slučajevima c = 0, osim za graf \hat{A}_{15}^7 , za koji je c = 1, ali i c' < 0, pa se ovi grafovi ne mogu proširiti dodavanjem novih grana na čvor x.

Proširivanje u čvoru x podrazumeva samo dodavanje pravih podstabala Smitovih stabala, jer u suprotnom graf C postaje graf tipa NSS. Dodata stabla možemo posmatrati kao korenska, pri čemu se koren identifikuje sa čvorom x, pa neka npr. oznaka E_8^1 predstavlja graf E_8 , čiji je koren x_1 , a oznaka $\hat{D}_n^n \cdot E_8^1$ koalescensiju grafova \hat{D}_n^n i E_8^1 u kojoj je čvor x grafa \hat{D}_n^n identifikovan sa čvorom x_1 grafa E_8^1 . Dodajemo najmanje jedno, a najviše tri (NSS!) stabla B oblika: E_8^8 , E_7^7 , E_6^6 , E_8^7 , E_7^6 , E_8^1 , E_7^1 , E_6^1 , D_k^k $(k \ge 5)$, D_k^1 $(k \ge 4)$, A_k^1 $(k \ge 2)$, a u Tabeli 3. za svako navedeno stablo B dajemo vrednosti za P_B , $P_{\overline{B}}$ i $P_B / P_{\overline{B}}$. Primetimo da u slučaju stabla D_k^k , tj. A_k^1 , najmanja vrednost P_B / \overline{P}_B iznosi 4/5, tj. 3/2.

Tabela 3. P_B , $P_{\overline{B}}$ i $P_B / P_{\overline{B}}$

В	E_{8}^{8}	E_{7}^{7}	E_{6}^{6}	E_{8}^{7}	E_{7}^{6}	E_8^1	E_{7}^{1}	E_6^1	D_k^k	D_k^1	A_k^1
P_B	1	2	3	1	2	1	2	3	4	4	<i>k</i> +1
$\overline{P}_{\scriptscriptstyle B}$	8	7	6	4	4	2	3	4	k	4	k
$P_{\scriptscriptstyle B}$ / $\overline{P}_{\scriptscriptstyle B}$	1/8	2/7	1/2	1/4	1/2	1/2	2/3	3/4	4/ <i>k</i>	1	(<i>k</i> +1)/ <i>k</i>

Kad formiramo koalescenciju $C \cdot B$, gde je C neko od nemaksimalnih stabala tipa NS iz Stava 3.1., a B jedno od stabala iz Tabele 3., možemo odrediti c i c' u svakom konkretnom slučaju, pomoću veza $c = P_C P_{\overline{B}} + P_{\overline{C}} P_B$ i $c' = 2c - P_{\overline{B}} P_{\overline{C}}$, a iz njih možemo izvesti sledeće pomoćne kriterijume.

- Ako je $P_C + P_{\overline{C}} < 0$, *B* može biti samo tipa A_k^1 , jer kako $P_B \le P_{\overline{B}}$ važi za sva druga stabla iz Tabele 3., sledilo bi c < 0. Ovo obuhvata sledeće slučajeve stabla

C: \hat{E}_{7}^{7} , \hat{E}_{6}^{2} , \hat{D}_{n}^{n} (n = 13, 14, 15), \hat{A}_{n}^{4} $(j \ge 12)$, \hat{A}_{n}^{5} za $7 \le j \le 18$, \hat{A}_{n}^{6} za $6 \le j \le 10$ i \hat{A}_{n}^{7} za j = 6, 7.

- Ako je P_c + P_c = 0, B može biti ili tipa D¹_k (pri čemu je c = 0 pa se dobija maksimalni graf), ili A¹_k (gde je c < 0, tako da možemo odmah razmatrati proširenje sa grafom A¹_k · A¹_l), jer kako P_B < P_B važi za sva ostala stabla iz Tabele 3., sledilo bi c < 0. Ovo obuhvata sledeće slučajeve stabla C: D³_n, A⁴₁₅, A⁵₁₁ i A⁶₁₁.
- Ako je $-P_C / P_{\overline{C}} \le P_B / P_{\overline{B}}$ za neko stablo *B* iz Tabele 3., onda se to stablo *B* može dodati na prethodno *C*, jer je dati uslov ekvivalentan sa uslovom $c \ge 0$.

Na osnovu svega prethodnog, opisaćemo sva maksimalna proširenja grafova tipa NS iz Stava 3.1. i to u Stavu 3.3. za grafove nastale proširivanjem \hat{E}_7^7 , \hat{E}_6^2 i \hat{D}_n^3 $(n \ge 5)$, u Stavu 3.4. za grafove \hat{D}_n^n (n = 9,...,15) i u Stavu 3.5. za grafove \hat{A}_n^{i+1} (n = i + j + 1, gdeje i = 2 i $j \ge 6$, i = 3 i $j \ge 4$, i = 4 i $4 \le j \le 18$, i = 5 i $5 \le j \le 10$, i = 6 i $6 \le j \le 7$).

Pri tome, moramo imati u vidu i sledeće relacije (sa \subset smo označili relaciju - biti pravi podgraf): $\hat{D}_{n}^{i+1} \subset \hat{D}_{n+1}^{i+2}$, $\hat{D}_{n}^{n} \subset \hat{D}_{n+1}^{n+1}$, $\hat{A}_{n}^{i+1} \subset \hat{D}_{n+1}^{i+1}$, $\hat{A}_{n}^{i+1} \subset \hat{A}_{n+1}^{i+1} \subset \hat{A}_{n+1}^{i+2}$; kao i $E_{6}^{6} \subset E_{7}^{7} \subset E_{8}^{8}$, $D_{n}^{n} \subset E_{n+1}^{n+1}$ (za n = 5, 6, 7), $E_{6}^{1} \subset E_{7}^{6} \subset E_{7}^{7}$, $D_{n}^{1} \subset E_{n+1}^{1}$ (za n = 5, 6, 7), $D_{4}^{1} \subset D_{5}^{5}$, $D_{n}^{n} \subset D_{n+1}^{n+1}$, $A_{n}^{1} \subset A_{n+1}^{1}$, $A_{n}^{1} \subset E_{k}^{k}$ (za $n \le k-2$ i k = 6, 7, 8), $A_{n}^{1} \subset E_{8}^{7}$ (za $n \le 7$), $A_{n}^{1} \subset E_{7}^{6}$ (za $n \le 6$), $A_{n}^{1} \subset E_{k}^{1}$ (za $n \le k-1$ i k = 6, 7, 8), $A_{n}^{1} \subset D_{n+1}^{n+1}$ (za $n \ge 4$) i $A_{n}^{1} \subset D_{n+1}^{1}$ (za $n \ge 3$).

Stav 3.3. Grafovi $Q_9 = \hat{E}_7^7 \cdot A_2^1$, $Q_{10} = \hat{E}_6^2 \cdot A_3^1$, $Q_{11} = \hat{D}_n^3 \cdot D_k^1$ i $Q_{12} = \hat{D}_n^3 \cdot A_2^1 \cdot A_2^1$ maksimalni su za uslove 1)-4).

Dokaz: Grafovi \hat{E}_7^7 i \hat{E}_6^2 mogu da se prošire samo stablom \hat{A}_k^1 $(k \ge 2)$; u prvom slučaju dobija se c = 2-k, u drugom c = 3-k, dok je u oba slučaja c' < 0, pa su Q_9 i Q_{10}

maksimalni grafovi. Za Q_{11} važi c = 0, pa je maksimalan, dok je $\hat{D}_n^3 \cdot A_k^1$ njegov podgraf, pa zato odmah razmatramo $\hat{D}_n^3 \cdot A_k^1 \cdot A_l^1$ $(l \le k)$, za koji je c = 4(k+l-kl), tj. maksimalan je i Q_{12} .

U sledećem stavu posmatramo moguća proširenja grafa \hat{D}_n^n (n = 9,...,15). Dobijene grafove Q_i prikazaćemo u Tabeli 4., u kojoj se pored odgovarajućeg indeksa *i* nalazi koalescencija kojoj je graf Q_i jednak.

Stav 3.4. Grafovi $Q_{13} - Q_{38}$ (Tabela 4.) maksimalni su za uslove 1)-4).

Dokaz: Primetimo prvo da za grafove tipa $C = \hat{D}_n^n \cdot B$ (gde je B jedan od grafova iz Tabele 3.) važi $c = (8-n)\overline{P} + 4P$ i $c' = (12-2n)\overline{P} + 8P$. Za n = 13,14,15 na \hat{D}_n^n moguće je dodati samo A_k^1 , a za \hat{D}_{12}^{12} i D_k^1 i A_k^1 . Kako za $\hat{D}_n^n \cdot A_k^1$ važi c = (12-n)k+4i c' = (20-2n)k+8, za n = 15 dobija se c < 0 (podgraf grafa Q_4), za n = 14, tj. 13, sledi c' < 0, dok je $c \ge 0$ za $k_{max} = 2$, tj. 4, što određuje grafove Q_{13} i Q_{14} . Takođe je maksimalan i graf $Q_{15} = \hat{D}_{12}^{12} \cdot D_k^1$ (c = 0), pa dalje odmah posmatramo $\hat{D}_{12}^{12} \cdot A_k^1 \cdot A_l^1$ ($l \le k$): c' < 0 i $c \ge 0$ samo za k = l = 2, pa se dobija Q_{16} .

Tabela 4. Grafovi $Q_{13} - Q_{38}$

13	$\hat{D}_{14}^{14}\cdot A_2^1$	22	$\hat{D}_{10}^{10} \cdot E_8^1$	31	$\hat{D}_{9}^{9}\cdot D_{16}^{16}$
14	$\hat{D}_{13}^{13}\cdot A_4^1$	23	$\hat{D}_{10}^{10} \cdot D_8^8$	32	$\hat{D}_9^9\cdot D_5^5\cdot A_2^1$
15	$\hat{D}_{12}^{12}\cdot D_k^1$	24	$\hat{D}_{10}^{10} \cdot E_7^1$	33	$\hat{D}_9^9\cdot D_k^1\cdot A_4^1$
16	$\hat{D}_{12}^{12}\cdot A_2^1\cdot A_2^1$	25	$\hat{D}_{10}^{10}\cdot A_{4}^{1}\cdot A_{4}^{1}$	34	$\hat{D}_{9}^{9}\cdot A_{20}^{1}\cdot A_{5}^{1}$
17	$\hat{D}_{11}^{11} \cdot E_6^1$	26	$\hat{D}_{10}^{10}\cdot A_{6}^{1}\cdot A_{3}^{1}$	35	$\hat{D}_{9}^{9}\cdot A_{12}^{1}\cdot A_{6}^{1}$
18	$\hat{D}_{11}^{11} \cdot D_5^5$	27	$\hat{D}_{10}^{10}\cdot A_2^1\cdot A_2^1\cdot A_2^1$	36	$\hat{D}_9^9\cdot A_9^1\cdot A_7^1$
19	$\hat{D}_{11}^{11}\cdot A_4^1\cdot A_2^1$	28	$\hat{D}_9^9 \cdot E_8^7$	37	$\hat{D}_9^9\cdot A_8^1\cdot A_8^1$

20	$\hat{D}_{10}^{10} \cdot E_6^6$	29	$\hat{D}_9^9\cdot E_7^7$	38	$\hat{D}_9^9\cdot A_4^1\cdot A_2^1\cdot A_2^1$
21	$\hat{D}_{10}^{10} \cdot E_7^6$	30	$\hat{D}_9^9\cdot E_6^1\cdot A_2^1$		

Za n=11, uslov $c \ge 0$ ispunjen je za $B \in \{E_6^1, D_5^5, D_k^1, A_k^1\}$, pri čemu su Q_{17} i Q_{18} maksimalni, dok se za $B = D_k^1$ dobija podgraf grafa Q_{15} (ali c' < 0, pa nema daljih proširenja) i za $B = A_k^1 \cdot A_l^1$ ($l \le k$) jedino graf Q_{19} .

Na \hat{D}_{10}^{10} mogu se dodati stabla E_6^6 , E_7^6 , E_8^1 , E_7^1 , E_6^1 , D_k^k ($5 \le k \le 8$), D_k^1 ($k \ge 4$), A_k^1 ($k \ge 2$). Pri tome su grafovi $Q_{20} - Q_{24}$ maksimalni (c' < 0), dok su ostale koalescencije podgrafovi prethodno određenih grafova, osim koalescencije $\hat{D}_{10}^{10} \cdot A_k^1$ koja može da se proširi do maksimalnih Q_{25} i Q_{26} i dalje do Q_{27} .

Na \hat{D}_{9}^{9} mogu se dodati E_{7}^{7} , E_{6}^{6} , E_{8}^{7} , E_{7}^{6} , E_{8}^{1} , E_{7}^{1} , E_{6}^{1} , D_{k}^{k} ($5 \le k \le 16$), D_{k}^{1} ($k \ge 4$), A_{k}^{1} ($k \ge 2$). Pri tome za slučajeve E_{7}^{7} , E_{6}^{6} , E_{8}^{7} , E_{7}^{6} , E_{8}^{1} i E_{7}^{1} važi c > 0 i c' < 0, što određuje maksimalne grafove Q_{28} i Q_{29} (ostali grafovi su ili njihovi pravi podgrafovi ili podgrafovi grafa $\hat{D}_{10}^{10} \cdot E_{8}^{1}$). $\hat{D}_{9}^{9} \cdot E_{6}^{1}$ nije maksimalan zbog c = 8 i c' = 0, ali je time određen Q_{30} . Za koalescenciju $\hat{D}_{9}^{9} \cdot D_{k}^{k}$ važi da je c = 16 - k, dok je c' = 32 - 6k, tako da je graf Q_{31} maksimalan, dok se jedino graf $\hat{D}_{9}^{9} \cdot D_{5}^{5}$ može proširiti u čvoru x, ali samo grafom A_{k}^{1} , jer se pri proširivanju sa D_{5}^{5} i D_{k}^{1} dobija c < 0. Za graf $\hat{D}_{9}^{9} \cdot D_{5}^{5} \cdot A_{k}^{1}$ dobija se c = 20 - 9k, što je nenegativno samo za k = 2. Graf Q_{32} je maksimalan, jer je za njega c = 2 i c' < 0. Koalescencija $\hat{D}_{9}^{9} \cdot D_{k}^{1}$ takođe može da se proširi u čvoru xsamo grafom A_{l}^{1} , pri čemu se dobija c = 16 - 4l, dok je odgovarajući c' = 32 - 24l, tako da se dobija maksimalni graf Q_{33} . Graf $\hat{D}_{9}^{9} \cdot A_{k}^{1}$ može takođe da se proširi grafom A_{l}^{1} i za $\hat{D}_{9}^{9} \cdot A_{k}^{1} \cdot A_{l}^{1}$ važi c = -kl + 4k + 4l, dok je c' = -6kl + 8k + 8l. Iz uslova $c \ge 0$, uz pretpostavku da je $l \le k$, dobijamo: za l = 2, 3, 4, k nije ograničeno (podgraf grafa Q_{33}); za l = 5, $k \le 20$; za l = 6, $k \le 12$; za l = 7, $k \le 9$; za l = 8, k = 8. Iz uslova $c' = -6kl + 8k + 8l \ge 0$ sledi da je proširenje u čvoru x moguće samo za l = 2 i $k \le 4$. Dakle, dobijaju se maksimalni grafovi $Q_{34} - Q_{37}$, dok je proširenje moguće izvesti pod navedenim uslovima i to samo grafom A_2^1 . Za koalescenciju $\hat{D}_9^9 \cdot A_k^1 \cdot A_2^1 \cdot A_2^1$ važi c = 4 - k, c' = 32 - 24k < 0, pa je i graf Q_{38} maksimalan. \Box

Stav 3.5. Grafovi $Q_{39} - Q_{187}$ (Prilog II - Tabela 1.1-10.) maksimalni su za uslove 1) – 4).

Dokaz: Za grafove $C = \hat{A}_n^{i+1} \cdot B$, gde je *B* jedno od stabala iz Tabele 3., važi $c = (i+j+2)P + (-ij+i+j+3)\overline{P}$ i $c' = 2(i+j+2)P + (-2ij+i+j+4)\overline{P}$. Diskusiju ćemo izvršiti po tipu stabla A_n^{i+1} , ali zbog $\hat{A}_n^{i+1} \subset \hat{A}_{n+1}^{i+2}$ diskusiju započinjemo od najvećeg *i*, tj. od i = 6.

Za i=6 može se dodati samo A_k^1 što daje c = -4jk + 17k + j + 8 i c' < 0, pa se za j=7 dobija c < 0 (podgraf maksimalnog grafa Q_7), a za j=6 maksimalni graf Q_{39} . Za i=5 i $6 \le j \le 10$ dodaje se takođe samo A_k^1 , pa je c = -3kj + 15k + j + 7 (c < 0 za j=8,9,10 - podgrafovi grafa Q_6) i c' < 0, tako da moguća proširenja daju Q_{40} i Q_{41} . Za j=5 može se dodati D_k^1 (c=0), što daje Q_{42} ; ili $A_k^1 \cdot A_l^1$ (c=12(l+k-lk)), c' < 0), što daje Q_{43} .

Za i = 4 i $7 \le j \le 18$ dodaje se samo A_k^1 , pa je c = -2kj + 13k + j + 6 (c < 0 za $j \ge 11$ - podgrafovi grafa \hat{A}_5^{24}) i c' < 0, što daje grafove $Q_{44} - Q_{47}$. Za j = 6 dodaje se D_k^1 (c = 4, c' < 0) i dobija Q_{48} , kao i $A_k^1 \cdot A_l^1$ (c = 12(k+l) - 11kl i c' < 0) i dobija Q_{49} . Za j = 5 mogu se dodati E_6^1 (c = 1, c' < 0), D_5^5 (c = 4, c' < 0), D_k^1 (c = 12, c' < 0) i $A_k^1 \cdot A_l^1$ (c = 11k + 11l - 8kl, c' < 0) što daje $Q_{50} - Q_{53}$. Za j = 4 dodaju se E_6^6 (c = 0), E_7^6 (c = 0), E_8^1 (c = 0), E_7^1 (c = 5, c' < 0), E_6^1 (c = 10, c' < 0), D_k^k (c = 40 - 5k, c' < 0), D_k^1 (c = 20, c' = 0) i $A_k^1 \cdot A_l^1$ (c = 5(2k + 2l - kl), c' = 20(k + l - kl)), što daje grafove $Q_{54} - Q_{62}$. Za i=3 i $j \ge 28$ dobijaju se podgrafovi grafa Q_3 , a za $12 \le j \le 27$ može se dodati samo A_k^1 (c = -jk + 11k + j + 5, c' < 0), pa se dobijaju grafovi $Q_{63} - Q_{69}$. Za j = 11dodaju se D_k^1 (c = 0) i $A_k^1 \cdot A_l^1$ (c = 16(k+l-kl), c' < 0) i dobijaju Q_{70} i Q_{71} . Primetimo da se za j = 10 i j = 9 dobijaju pravi podgrafovi prethodna dva grafa, za koje važi $c \ge 0$ i c' < 0, pa se ne mogu dalje proširivati. Za j = 8 može se dodati D_k^{κ} (c=52-10k, c'<0) što daje Q_{72} , D_k^1 bez novih proširenja (podgraf grafa Q_{70}) i $A_k^1 \cdot A_l^1$ (c = 13(k+l) - 10kl, c' < 0), što daje Q_{73} . Za j = 7 dodaju se E_7^1 (c = 0), E_6^1 $(c = 4, c' < 0), D_k^k$ (c = 48 - 8k, c' < 0), odakle dobijamo grafove $Q_{74} - Q_{76}; D_k^1$ (c > 0, c' < 0) što ne daje nove grafove i $A_k^1 \cdot A_l^1$ (c = 4(3k + 3l - 2kl), c' = 4(6k + 6l - 7kl)), što daje Q_{77} i Q_{78} . Za j = 6 mogu se dodati E_7^1 (c = 4, c' < 0), $E_6^1(c=9,c'<0), \quad D_k^k(c=44-6k, c'<0), \quad D_k^1(c=20,c'<0) \quad i \quad A_k^1 \cdot A_l^1 \quad (c=20,c'<0)$ c = 11(k+l) - 6kl, c' = 22(k+l) - 23kl), odakle dobijamo nove maksimalne grafove $Q_{79} - Q_{81}$. Za j = 5 dodaju se E_6^6 (c = 6, c' < 0), E_7^6 (c = 4, c' < 0), E_8^1 (c = 2, c' < 0), E_7^1 (c = 8, c' < 0), E_6^1 (c = 14, c' < 0), D_k^k (c = 40 - 4k, c' < 0), što definiše maksimalne grafove $Q_{82} - Q_{85}$; D_k^1 (c = 24, c' = 4), koji može da se proširi do Q_{86} ; $A_k^1 \cdot A_l^1$ (c = 2(5k + 5l - 2kl), c' = 20(k + l) - 18kl), koji se proširuje do maksimalnih $Q_{87} - Q_{90}$. Za j = 4, dodaju se E_7^7 $(c = 4, c' < 0), E_6^6$ $(c = 15, c' < 0), E_8^7$ $(c = 1, c' < 0), E_8^7$ c' < 0), E_7^6 (c = 10, c' < 0), E_8^1 (c = 5, c' < 0), E_7^1 (c = 12, c' < 0), koji određuju Q_{91} i Q_{92} ; E_6^1 (c=21,c'=6), koji može da se proširi do Q_{93} ; D_k^k (c=36-2k, c' = 72 - 13k), koji može da se proširi do Q_{94} , tj. Q_{95} ; D_k^1 (c = 28, c' = 20), koji može da se proširi do Q_{96} ; $A_k^1 \cdot A_l^1$ (c = 9(k+l) - 2kl, c' = 18(k+l) - 13kl), što određuje nove grafove $Q_{97} - Q_{101}$ i dalje Q_{102} . Za i = 2, mogu se dodati E_8^8 (c = 44 - 7j, c' < 0, E_7^7 (c = 43 - 5j, c' < 0), E_6^6 (c = 42 - 3j, c' < 0), E_8^7 (c = 24 - 3j, c' < 0, E_7^6 (c = 28 - 2j, c' < 0), E_8^1 (c = 14 - j, c' < 0), što određuje grafove $Q_{103} - Q_{108}$; E_7^1 (c = 23 - j, c' = 34 - 5j), koji određuje Q_{109} i dozvoljava proširivanje do Q_{110} ; E_6^1 (c = 32 - j, c' = 48 - 6j), što daje Q_{111} i Q_{112} ; D_k^k (c = -jk + 5k + 4j + 16, c' = -3kj + 6k + 8j + 32), što određuje $Q_{115} - Q_{125}$ a daljim proširivanjem (samo sa A_l^1) i $Q_{126} - Q_{128}$; D_k^1 (c = 36, c' = 56 - 4j), što daje podgraf maksimalnog Q_3 , a dalje može da se proširi samo sa A_l^1 , $(c_1 = 4(-jl + 5l + j + 4),$ c' < 0), što određuje $Q_{129} - Q_{133}$; $A_k^1 \cdot A_l^1$ (c = (5 - j)kl + (j + 4)(k + l),c' = -3(j + 2)kl + 2(j + 4)(k + l)), što određuje grafove $Q_{134} - Q_{143}$ za j = 6, $Q_{144} - Q_{149}$ za j = 7, $Q_{150} - Q_{153}$ za j = 8, $Q_{154} - Q_{156}$ za j = 9, $Q_{157} - Q_{159}$ za j = 10, $Q_{160} - Q_{162}$ za j = 11, $Q_{163} - Q_{164}$ za j = 12, $Q_{165} - Q_{166}$ za j = 13, Q_{167} za j = 14 i $Q_{168} - Q_{181}$ za $j \ge 15$. Pri tome je u poslednjem slučaju za $j \le 14$ moguće i proširenje sa $A_k^1 \cdot A_l^1 \cdot A_p^1$ (c = (1 - 2j) klp + (j + 4)(kl + pk + pl), c' < 0) ali samo za p = 2 i l = k = 3, što daje Q_{182} i za p = l = 2, što određuje $Q_{183} - Q_{187}$.

Prelazimo na analizu slučajeva u kojima su grafovi C iz Leme 3.1. tipa PS. Da bi graf koji zadovoljava uslove 1) – 4) u ovom slučaju bio maksimalan, mora se sastojati od koalescencije bar 3 ovakva korenska grafa. Takođe, zbog slučaja S grafovi $E_6^6, E_7^6, E_8^1, D_8^8$ ne smeju biti u koalescenciji sa grafom A_2^1 , grafovi E_7^1 i D_6^6 ne smeju biti sa A_3^1 , graf E_6^1 ne sme biti sa A_4^1 , graf D_5^5 ne sme biti sa A_5^1 , a graf D_k^1 ne sme biti sa grafom istog tipa, niti sa koalescencijom grafova $A_2^1 \cdot A_2^1$.

U sledećem stavu razmatramo slučajeve u kojima *C* sadrži bar jedno od korenskih stabala $E_8^8, E_7^7, E_6^6, E_8^7, E_7^6, E_8^1, E_7^1$ i E_6^1 .

Stav 3.6. Grafovi $W_1 - W_{309}$ (Tabela 6. i Prilog II - Tabela 6.1-7.) maksimalni su za uslove 1) - 4).

•	E_{8}^{8}	E_{7}^{7}	E_{6}^{6}	E_{8}^{7}	E_{7}^{6}	E_8^1	E_7^1	E_6^1
E_{8}^{8}	7/4	89/56	33/24	26/16	11/8	11/8	29/24	9/8
E_{7}^{7}		10/7	17/14	41/28	17/14	15/13	22/21	27/28
E_{6}^{6}			1	5/4	1	1	5/6	3/4
E_{8}^{7}				3/2	5/4	5/4	13/12	1
E_{7}^{6}					1	1	5/6	5/3
E_8^1						1	5/6	3/4
E_7^1							2/3	7/12
E_6^1								1/2

Tabela 5. $-P/\overline{P}$ za grafove $E_8^8, E_7^7, E_6^6, E_8^7, E_7^6, E_8^1, E_7^1$ i E_6^1

U Tabeli 2. iz Priloga II navedene su vrednosti za P i \overline{P} , tj. c i c' za sve koalescencije dva posmatrana stabla. Ako je c' < 0 (kao u slučajevima $E_8^8 \cdot E_8^8$, $E_8^8 \cdot E_7^7$ i $E_8^8 \cdot E_8^7$) nema daljeg proširivanja; međutim, ova tri grafa nisu maksimalna, jer su tipa PSS. U svim ostalim slučajevima moguće je proširiti dobijenu koalescenciju bar jednim korenskim stablom tipa B (Tabela 3.). U Tabeli 5. navodimo vrednosti količnika $-P/\overline{P}$ iz kojih se, na osnovu kriterijuma poređenja sa P_B/\overline{P}_B , ustanovljava koji je dozvoljeni tip stabla B u konkretnom slučaju.

Za novu koalescenciju kao u prethodnom slučaju računamo nove vrednosti c, c' i \overline{P} (Prilog II - Tabela 3.) i na osnovu njih određujemo sve grafove koji su maksimalni za uslove 1)-4) i koji sadrže bar dva stabla iz skupa $\{E_8^8, E_7^7, E_6^6, E_8^7, E_7^6, E_8^1, E_7^1, E_6^1\}$, tj. oblika su $E_x^y \cdot E_z' \cdot X$ (Tabela 6.). Postupak izvodimo imajući u vidu izvedene kriterijume za slučajeve $P + \overline{P} < 0$ (ekvivalentno sa c' < c) i $P + \overline{P} = 0$ (ekvivalentno sa c' = c). Ako je $\overline{P} > -P$ (tj. c' > c), potrebno je detaljnije ispitivanje proširivanja grafa, koje ćemo opisati za slučajeve kad je početno stablo E_8^8 ili E_7^7 (ostali slučajevi su analogni).

Tabela 6. Grafovi X

X	•	E_{8}^{8}	E_{7}^{7}	E_{6}^{6}	E_{8}^{7}	E_{7}^{6}	E_8^1	E_7^1	E_6^1
1-2	E_{8}^{8}	/	/	/	/	/	/	A_4^1	A_8^1
3-10	E_{7}^{7}	/	A_2^1	A_4^1	A_2^1	A_4^1	A_4^1	A_{21}^{1}	$D_k^1, A_2^1 \cdot A_2^1$
11-17	E_{6}^{6}	/	/	D_k^1	A_4^1	D_k^1	D_k^1	D_k^1	E_{6}^{1}, D_{5}^{5}
18-23	E_{8}^{7}	/	/	/	A_2^1	A_4^1	A_4^1	A_{12}^{1}	$D^1_k, A^1_2 \cdot A^1_2$
24-28	E_{7}^{6}	/	/	/	/	D_k^1	D_k^1	D_k^1	E_{6}^{1}, D_{5}^{5}
29-32	E_8^1	/	/	/	/	/	D_k^1	D_k^1	E_{6}^{1}, D_{5}^{5}
33-41	E_{7}^{1}	/	/	/	/	/	/	$E_7^1, E_6^1, D_6^6, \ D_k^1, A_6^1 \cdot A_2^1$	$E_6^1, D_6^6, D_k^1, A_{12}^1 \cdot A_2^1$
42-46	E_6^1	/	/	/	/	/	/	/	$egin{aligned} E_6^1, D_8^8, D_k^1 \cdot A_2^1, \ A_6^1 \cdot A_3^1, A_2^1 \cdot A_2^1 \cdot A_2^1 \cdot A_2^1 \end{aligned}$

Ako je početno stablo E_8^8 , po prethodnom kriterijumu koalescencijama $E_8^8 \cdot E_6^6$, $E_8^8 \cdot E_7^6$, moguće je dodati samo stablo A_k^1 , pri čemu se iz uslova $c \ge 0$ u prva tri slučaja dobija k = 2, što odbacujemo (S), a u ostalim slučajevima na osnovu $c \ge 0$ i c' < 0 dobijaju se grafovi W_1 i W_2 . U slučaju da je početno stablo E_7^7 , na sve navedene koalescencije može se dodati stablo A_k^1 , $(W_3 - W_8)$, a samo u slučaju koalescencije sa E_6^1 i stablo D_k^1 (W_9). Primetimo da u ovom slučaju nema smisla posmatrati koalescenciju sa A_k^1 (podgraf prethodne), nego odmah slučaj $E_7^7 \cdot E_6^1 \cdot A_k^1 \cdot A_l^1$, odakle se na osnovu uslova $c \ge 0$ i c' < 0 dobija graf W_{10} . Na sličan način dobijamo i ostale grafove $W_{11} - W_{46}$ iz Tabele 6.

Ako se na početni graf, koji je jedan od grafova $E_8^8, E_7^7, E_6^6, E_8^7, E_7^6, E_8^1, E_7^1, E_6^1$ dodaju stabla tipa D_n^n , D_n^1 ili A_n^1 , dobijaju se vrednosti za P i \overline{P} prikazane u Tabeli 4. Priloga II.

U slučaju dodavanja stabla D_n^n , na osnovu vrednosti $(-P/\overline{P})_{max}$ vidimo da se na ovakve koalescencije uvek može dodati još i stablo tipa A_k^1 , kao i stablo D_k^1 (osim u

slučaju E_8^8), dok se stablo tipa D_k^k može dodati samo ako je početno stablo jedno od stabala $E_6^6, E_7^6, E_8^1, E_7^1, E_6^1$. U Tabeli 5.1-3. Priloga II date su vrednosti za c, \overline{P}_2 i c' za nove koalescencije, odakle su na isti način kao u prethodnim slučajevima dobijeni novi maksimalni grafovi za uslove 1)-4): $W_{47} - W_{53}$, oblika $E_x^y \cdot D_n^n \cdot D_k^k$, dati u Tabeli 6.1. Priloga II, $W_{54} - W_{60}$, oblika $E_x^y \cdot D_n^n \cdot D_k^1$ i W_{61} oblika $E_x^y \cdot D_n^n \cdot D_k^1 \cdot A_l^1$ (Prilog II - Tabela 6.2.); $W_{62} - W_{122}$, oblika $E_x^y \cdot D_n^n \cdot A_k^1$, (Prilog II - Tabela 6.3.); $W_{123} - W_{132}$, oblika $E_x^y \cdot D_n^n \cdot A_k^1 \cdot A_l^1 \cdot A_p^1$ (Prilog II - Tabela 6.4.); $W_{134} - W_{148}$, oblika $E_x^y \cdot D_n^n \cdot A_k^1 \cdot A_l^1$ (Prilog II - Tabela 6.5.); $W_{149} - W_{302}$, oblika $E_x^y \cdot A_n^1 \cdot A_k^1 \cdot A_l^1$, (Prilog II - Tabela 6.6.) i $W_{303} - W_{309}$, oblika $E_x^y \cdot A_n^1 \cdot A_k^1 \cdot A_l^1 \cdot A_p^1$ (Prilog II - Tabela 6.7.), čime su opisani svi slučajevi.

Preostalo je još da razmotrimo slučajeve kada je graf C nastao samo kao koalescencija stabala tipa D_n^n , D_n^1 i A_n^1 .

Stav 3.7. Grafovi $W_{291} - W_{1114}$ su maksimalni za uslove 1)-4).

Dokaz: Odgovarajuće vrednosti za stablo D_n^n navedene su u Tabeli 7, a za proširenja u Tabeli 7. Priloga II.

TT 1 1		•			\mathbf{n}^n
Tabela	1	C1	C'	Z 2	D°
1 40014	<i>'</i> •	U 1	v	Lu	-n

D_n^n ·	D_k^k	D_k^1	A_k^1
С	4(n+k)	4 <i>n</i> +16	4 <i>k</i> + <i>n</i> + <i>nk</i>
<i>c</i> ′	-nk+8n+8k	4 <i>n</i> +32	nk+8k+2n

Iz uslova $c \ge 0$ i c' < 0 dobijeni su maksimalni grafovi $W_{310} - W_{312}$, oblika $D_n^n \cdot D_k^k \cdot D_l^l$, prikazani u Tabeli 8.1. Priloga II i $W_{313} - W_{316}$, oblika $D_n^n \cdot D_k^k \cdot D_l^1$, pri čemu je proširenje moguće samo za n = k = 5 i to jedino stablom A_2^1 , čime se dobija graf W_{317} (Prilog II - Tabela 8.2.). U Tabeli 8.3. Priloga II prikazani su maksimalni grafovi $W_{318} - W_{381}$ za slučaj $D_n^n \cdot D_k^k \cdot A_l^1$. Za k = 8 i n = 5, 6, 7, 8, k = 7 i n = 5, ..., 9, k = 6 i n = 5, ..., 12 i k = 5 i n = 5, ..., 20 dobijaju se podgrafovi grafova $W_{294} - W_{297}$, a za k = 7, 8 i l = 2, k = 6 i l = 3 i k = 5 i l = 2, ..., 5 grafovi tipa PSS. Proširenje je moguće za $k \le 8$ i dovodi do maksimalnih grafova $W_{382} - W_{397}$, koji se dobijaju za vrednosti n, k, l, p iz Tabele 8.4. Priloga II. Za n = k = 5 i p = 2 vrednost l je neograničena (podgraf W_{317}). Novo proširenje moguće je samo za n = k = 5 i l = p = 2, pa se dobija W_{398} .

Za graf $D_n^n cdot D_k^1 cdot A_l^1 cdot A_p^1$ svako moguće proširenje dovodi do grafa tipa SS ili PSS, tako da razmatramo samo uslov $c \ge 0$ i odatle dobijamo maksimalne grafove $W_{399} - W_{419}$, za vrednosti n, l, p iz Tabele 8.5. Priloga II. Za n = 5 i $p \le 5$, n = 6 i $p \le 3$ i n = 7, 8 i p = 2 vrednost l nije ograničena, ali se takođe dobijaju grafovi tipa SS ili PSS.

Za graf $D_n^n \cdot A_k^1 \cdot A_l^1 \cdot A_p^1$ iz $c \ge 0$ i c' < 0 dobijaju se maksimalni grafovi za vrednosti date u Tabelama 8.6.-10. Priloga II, pri čemu za Tabelu 8.6. $(W_{420} - W_{522})$ važi n = 5, za Tabelu 8.7. $(W_{523} - W_{555})$ n = 6, za Tabelu 8.8. $(W_{556} - W_{579})$ n = 7, za Tabelu 8.9. $(W_{580} - W_{669})$ n = 8,...,16, a za Tabelu 8.10. $(W_{670} - W_{732})$ $n \ge 17$. Za slučajeve n = 5 i p = l = 10; p = 9, l = 9, 10, 11; p = 8 i l = 8,...,13; p = 7 i l = 7,...,17; p = 6 i l = 6,...,30 vrednost k je neograničena, dok za n = p = 5 ni k ni l nisu ograničeni, ali se dobijaju podgrafovi odgovarajućih grafova tipa $D_n^n \cdot D_k^1 \cdot A_l^1 \cdot A_p^1$ ili slučaj PSS.

Dodavanjem novog stabla A_q^1 dobija se c = -2nklpq + 4klpq + nlpq + nkpq + nklq + nklpi c' = -5nklpq + 8klpq + 2nlpq + 2nkpq + 2nklq + 2nklp. Iz $c \ge 0$ sledi $q \le 3$. Međutim, za q = 3, sledi p = l = 3, što odmah odbacujemo zbog uslova (S). Za q = 2, sledi $p \le 4$, ali se slučaj p = 4 svodi na (S). Za q = 2 i p = 3 iz $c \ge 0$ i c' < 0 se dobijaju se maksimalni grafovi W_{733} i W_{734} za $(n,k,l) \in \{(5,8,4), (5,30,3)\}$, dok se ostali slučajevi svode na grafove tipa SS i PSS. Za q = p = 2, dobijaju se maksimalni grafovi $W_{735} - W_{753}$, prikazani u Tabeli 8.11. Priloga II. Ostali slučajevi podgrafovi su već opisanih grafova. Dodavanje još jednog stabla moguće je samo za q = 2, odakle sledi p = l = 2, a pošto novo stablo može biti jedino A_2^l , dobija se (S).

Prelazimo na slučaj D_n^1 . Na ovaj graf se zbog (S) može dodati samo stablo A_k^1 , ali odmah posmatramo koalescenciju $D_n^1 \cdot A_k^1 \cdot A_l^1 \cdot A_p^1 \cdot A_q^1$, jer je $D_n^1 \cdot A_k^1 \cdot A_l^1 \cdot A_p^1$ graf tipa PSS. Za ovakvu koalescenciju važi c = 4(-klpq + klp + klq + kpq + lpq) i c' = 4(-3klpq + 2(klp + klq + kpq + lpq)). Kako je $c' \ge 0$ samo za q = 2, pri čemu je bi i novo stablo bilo A_2^1 , ovaj slučaj odbacujemo zbog (S). Iz $c \ge 0$ dobijamo maksimalne grafove $W_{754} - W_{771}$, prikazane u Tabeli 8.12. Priloga II, dok su ostali slučajevi podgrafovi već opisanih grafova.

Za slučaj A_n^1 posmatramo odmah koalescenciju $A_n^1 \cdot A_k^1 \cdot A_l^1 \cdot A_p^1 \cdot A_q^1$ $(q \le p \le l \le k \le n)$ za koju je c = -nklpq + nklq + nkpq + nlpq + klpq i c' = -3nklpq + 2(nklp + nklq + nkpq + + nlpq + klpq). Maksimalni grafovi prikazani su u Tabeli 8.13. Priloga II za q > 2 $(W_{772} - W_{833})$, za q = 2 i p > 5 u Tabeli 8.14. Priloga II $(W_{834} - W_{851})$, za q = 2 i p = 5 u Tabeli 8.15. Priloga II $(W_{852} - W_{882})$, za q = 2 i p = 4 u Tabeli 8.16. Priloga II $(W_{883} - W_{944})$, a za q = 2 i p = 3 u Tabeli 8.17. Priloga II ($W_{945} - W_{1099}$). Jedina moguća proširenja koja ne daju slučajeve SS ili podgrafove već opisanih grafova su proširenja stablom A_2^1 za q = 2 dok su vrednosti za ostale parametre date u Tabeli 8.18. iz Priloga II $(W_{1100} - W_{1114})$. \Box

Na osnovu svega prethodnog, formulisaćemo teoremu koja određuje sve maksimalne refleksivne RS-neodlučive grafove klase R_1 .

Teorema 3.6. Graf *G* (Slika 28.), koji je RS-neodlučiv, je maksimalan refleksivan graf u klasi R_1 ako i samo ako je graf $C = A \cdot B$, koji je nastao identifikovanjem korenskih čvorova stabala *A* i *B*, koalescencija dva Smitova stabla, jedan od grafova $Q_1 - Q_{187}$ ili jedan od grafova $W_1 - W_{1114}$.

3.3. Klasa *R*₂

Slika 31. Osnovni graf klase R_2

Graf koji pripada klasi R_2 ima cikličku strukturu prikazanu na Slici 31. Centralna kontura je dužine 3, sa čvorovima c_1 , c_2 i c_3 , a na čvorove c_1 i c_2 oslonjene su spoljašnje konture C_m i C_n , respektivno. Svi čvorovi osnovnog grafa (Slika 31.), koji je kao podgraf sadržan u svakom grafu ove klase, mogu biti dodatno opterećeni stablima. Čvorove spoljašnjih kontura susedne čvorovima centralne konture, tzv. *c*-čvorovima, nazivamo crni, a ostale čvorove spoljašnjih kontura, različite od *c*-čvorova, beli čvorovi.

U ovom delu, zbog obimnosti, daćemo samo parcijalne rezultate koji se tiču ove klase.

Najpre uočimo da se kao podgraf grafa ove klase uvek pojavljuje biciklički graf s mostom, koji u slučaju da je graf klase R_2 refleksivan, mora takođe biti refleksivan, što nam nameće određena ograničenja [44]: nijedan beli čvor ne sme biti stepena većeg od tri, na svakoj spoljašnjoj konturi može biti opterećen najviše po jedan beli čvor, ukupno je moguće opteretiti najviše dva čvora spoljašnjih kontura različita od *c*-čvorova.

Ispitajmo prvo potklasu AR_2 klase R_2 u kojoj su grafovi kod kojih su opterećena bar dva (a time i tačno dva) čvora spoljašnjih kontura, koji su različiti od *c*-čvorova. Biciklički grafovi, pravi podgrafovi grafova iz AR_2 , ne smeju biti pravi nadgrafovi grafova $A_1 - A_{14}$, pa analizu sprovodimo počevši od tih grafova: pitanje je da li ovi grafovi mogu da se prošire do refleksivnog grafa klase AR_2 , i ako mogu, čime?

Slika 32. Graf G klase AR_2

Razmotrimo graf *G* (Slika 32.) iz klase AR_2 , koji ima cikličku strukturu kao graf sa Slike 31., u kome su podgrafovi G_1 i G_2 nastali eventualnim opterećivanjem onih čvorova spoljašnjih kontura koji su različiti od *c*-čvorova, dok je *H* stablo, ali takvo da je indeks \overline{H} (tj. njegovih komponenti) manji od 2. Analiziraćemo slučajeve kad je podgraf G - H jednak jednom od grafova $A_1 - A_{14}$, ili pravi podgraf nekog od njih i odrediti vrednost karakterističnog polinoma $P_G(\lambda)$ u tački 2: da bi graf *G* bio refleksivan, potrebno je da je $P_G \leq 0$. (Pošto je, po Lemi 2.1. $\lambda_3(G) \leq 2$, onda bi u slučaju da je $P_G = 0$ bilo potrebno dalje ispitati da li je $\lambda_2 = 2$, ili je $\lambda_2 > 2$ i $\lambda_3 = 2$.) Primetimo i to da su oni pravi podgrafovi grafova $A_1 - A_{14}$ čija su dva čvora spoljašnjih kontura (različita od *c*-čvorova) opterećena, jedino grafovi oblika A_{11} , ali za $(m,n) \in \{(3,3), (3,4), (3,5)\}$, pa bi trebalo, da bismo i njih uključili u razmatranje, dalje da posmatramo grafove tipa A_{11} bez ikakvih ograničenja.

Lema 3.2. Ako je RS-neodlučiv graf G klase AR_2 refleksivan, njegov podgraf G-H jednak je jednom od grafova A_i , gde je $i \in \{1,3,4,7,11,12,13\}$ ili je pravi podgraf nekog od njih.

Dokaz: Izračunaćemo P_G za sve grafove klase AR_2 kod kojih je G-H jednak nekom od grafova $A_1 - A_{14}$. Po Švenkovim lemama sledi:

$$\begin{split} P_{G} &= P_{H}(P_{G_{1}}P_{G_{2}} - P_{\bar{G}_{1}}P_{\bar{G}_{2}}) + P_{\bar{H}}[2(P_{G_{1}}P_{G_{2}} - P_{\bar{G}_{1}}P_{\bar{G}_{2}}) - P_{\bar{G}_{1}}P_{G_{2}} - P_{G_{1}}P_{\bar{G}_{2}} - 2P_{\bar{G}_{1}}P_{\bar{G}_{2}}] - \\ & 2P_{H}(P_{G_{1}}P_{G_{2}} - P_{\bar{G}_{1}}P_{\bar{G}_{2}}) \\ &= P_{H}(P_{G_{1}}P_{G_{2}} - P_{\bar{G}_{1}}P_{\bar{G}_{2}}) - P_{\bar{H}}(P_{\bar{G}_{1}}P_{G_{2}} + P_{G_{1}}P_{\bar{G}_{2}} + 2P_{\bar{G}_{1}}P_{\bar{G}_{2}}), \end{split}$$

pa ćemo zameniti odgovarajuće vrednosti za slučajeve A_i (i = 1,...,14) i rezultate prikazati u Tabeli 8.

i	1		2 3		4		5	6	7	8	9
P_G	0	$P_{\bar{H}}(n)$	$\frac{1}{\bar{q}}(m+2)n \qquad -(2P_H+P_{\bar{H}})$		$-P_{H}$		$4P_{\overline{H}}$	$2P_{\overline{H}}$	$-2P_{H}$	$2P_{\overline{H}}$	$-P_H + 2P_{\bar{H}}$
i		10		11			12		13	14	
P_{G}	2	$4P_{\overline{H}}$	$-P_{H}(m$	$+n+1)-P_{\bar{H}}(m+1)$	n + 2) -	$4(P_{H} +$	$(P_{\overline{H}})$	$-P_H$	$P_{\overline{H}}$	

Tabela 8. Vrednost P_G za različite slučajeve A_i (i = 1, ..., 14)

Vidimo da je proširivanje grafova A_i , za $i \in \{2, 5, 6, 8, 9, 10, 14\}$, nemoguće.

Klasu AR_2 podelićemo na potklase A_iR_2 , po grafu $A_i = G - H$. Primetimo odmah da je za grafove A_4 , A_7 i A_{13} uslov $P_G \le 0$ ekvivalentan uslovu $P_H \ge 0$, što daje sledeću lemu.

Lema 3.3. Grafovi A_4R_2 , A_7R_2 i $A_{13}R_2$ (Slika 33.), gde je *S* proizvoljno Smitovo stablo, predstavljaju maksimalne refleksivne grafove.

Slika 33. Grafovi A_4R_2 , A_7R_2 i $A_{13}R_2$

Dokaz: Grafovi A_4 , A_7 i A_{13} su maksimalni u klasi bicikličkih grafova s mostom, pa ne mogu da se prošire ni u jednom čvoru. Na čvor c_3 može da se doda graf H, ali za njega osim uslova $\lambda_1(\bar{H}) < 2$, mora da važi i $P_H \ge 0$. Pošto su maksimalna stabla koja zadovoljavaju ove uslove Smitova, sledi tvrđenje. \Box

Preostaje da se ispitaju moguća proširenja grafova A_1 , A_3 , A_{11} i A_{12} , tj. potklase A_1R_2 , A_3R_2 , A_1R_2 i $A_{13}R_2$.
Neka je $G-H = A_1$. Iz $P_G = 0$ i $\lambda_4(G) < 2$ (po Lemi 2.1. može se zaključiti da je $\lambda_3(A_1) < 2$, a zatim i da je $\lambda_4(G) < 2$) zaključujemo da je $\lambda_2(G) = 2$ ili $\lambda_3(G) = 2$. Zato ćemo detaljnije ispitati $P_G(\lambda)$:

$$\begin{split} P_{G}(\lambda) &= P_{H}(\lambda)P_{A_{1}}(\lambda) + P_{\bar{H}}(\lambda)(2P_{A_{1}}(\lambda) - 2P_{K_{1,3}}(\lambda)(\lambda P_{C_{4}}(\lambda) - P_{P_{3}}(\lambda)) - 2P_{K_{1,3}}(\lambda)) \\ &- 2P_{\bar{H}}(\lambda)P_{A_{1}}(\lambda) \\ &= P_{H}(\lambda)(\lambda P_{C_{4}}(\lambda) - P_{P_{3}}(\lambda))^{2} - P_{K_{1,3}}^{2}(\lambda)) + P_{\bar{H}}(\lambda)(-2P_{K_{1,3}}(\lambda)(\lambda P_{C_{4}}(\lambda) - P_{P_{3}}(\lambda))) \\ &= (\lambda P_{C_{4}}(\lambda) - P_{P_{3}}(\lambda) + P_{K_{1,3}}(\lambda))(P_{H}(\lambda)(\lambda P_{C_{4}}(\lambda) - P_{P_{3}}(\lambda) - P_{K_{1,3}}(\lambda)) - 2P_{\bar{H}}(\lambda)P_{K_{1,3}}(\lambda)) \\ &= (\lambda(\lambda^{4} - 4\lambda^{2}) - \lambda^{3} + 2\lambda + \lambda^{4} - 3\lambda^{2})(P_{H}(\lambda)(\lambda(\lambda^{4} - 4\lambda^{2}) - \lambda^{3} + 2\lambda - \lambda^{4} + 3\lambda^{2}) \\ &- 2P_{\bar{H}}(\lambda)(\lambda^{4} - 3\lambda^{2})) \\ &= (\lambda^{5} + \lambda^{4} - 5\lambda^{3} - 3\lambda^{2} + 2\lambda)(P_{H}(\lambda)(\lambda^{5} - \lambda^{4} - 5\lambda^{3} + 3\lambda^{2} + 2\lambda) - 2P_{\bar{H}}(\lambda)(\lambda^{4} - 3\lambda^{2})) \\ &= (\lambda - 2)(\lambda^{4} + 3\lambda^{3} + \lambda^{2} - \lambda)(P_{H}(\lambda)(\lambda^{5} - \lambda^{4} - 5\lambda^{3} + 3\lambda^{2} + 2\lambda) - 2P_{\bar{H}}(\lambda)(\lambda^{4} - 3\lambda^{2})). \end{split}$$

Ako označimo sa $Q_G(\lambda)$ polinom takav da je $P_G(\lambda) = (\lambda - 2)Q_G(\lambda)$, biće $Q_G(\lambda) = -256(P_H + P_{\bar{H}})$. Primetimo da je uslov $\lambda_2(G) \le 2$ ekvivalentan sa uslovom $Q_G \le 0$, jer po prethodnom razmatranju iz $\lambda_2(G) > 2$ sledi $\lambda_3(G) = 2$, a time i $Q_G > 0$, i obrnuto. Preciznije, važi $Q_G < 0 \Leftrightarrow \lambda_3(G) < 2 \land \lambda_2(G) = 2$, kao i $Q_G = 0 \Leftrightarrow \lambda_3(G) = \lambda_2(G) = 2$, pa u svakom slučaju možemo preći na traženje svih maksimalnih stabala H takvih da je $\lambda_1(\bar{H}) < 2$ i $P_H + P_{\bar{H}} \ge 0$ (kraće: $h \ge 0$), tj. na osnovu prethodnog, važi sledeća teorema.

Teorema 3.7. Graf *G* (Slika 32.), za koji važi da je $G - H = A_1$, je maksimalan refleksivan graf u klasi R_2 ako i samo ako je *H* maksimalno stablo za koje važe uslovi:

1') H je pravi nadgraf Smitovog stabla

2') \bar{H} , odnosno njegove komponente, su pravi podgrafovi Smitovih stabala (tj. $\lambda_1(\bar{H}) < 2$)

$$3') h \ge 0$$
.

Kao i kod klase R_1 , i ovde konstatujemo da ako za odgovarajuće stablo H važi h = 0, i ako proširivanjem visećom granom u čvoru c_3 formiramo graf H', za njega će važiti $h' = 2P_H - P_{\bar{H}} + 2P_{\bar{H}} = 2h - P_{\bar{H}} = -P_{\bar{H}} < 0$, iz čega vidimo da je *H* maksimalan u pogledu proširivanja u c_3 .

Uočimo da svako Smitovo stablo zadovoljava date uslove $\lambda_1(\overline{H}) < 2$ i $h \ge 0$ i ispitajmo šta su maksimalne ekstenzije Smitovih stabala, u čvoru c_3 , za koje dati uslovi takođe važe. Za koalescenciju $H = S \cdot T$ proizvoljnog Smitovog stabla i stabla T, u čvoru c_3 , važiće:

$$h = P_S \cdot P_{\overline{T}} + P_{\overline{S}} \cdot P_T - P_{\overline{S}} P_{\overline{T}} = P_{\overline{S}} (P_T - P_{\overline{T}}),$$

pa vidimo da *T* ne može biti Smitovo stablo, a posmatrajući prava podstabla Smitovih stabala uočavamo da uslov $P_T - P_{\overline{T}} \ge 0$ zadovoljavaju jedino D_k^1 $(k \ge 4)$ i A_k^1 $(k \ge 2)$. Za $T = D_k^1$ važi h = 0, A_k^1 je pravi podgraf od D_k^1 , a za $T = A_k^1 \cdot A_l^1$ važi $h = P_{\overline{S}}(k+l-kl) \ge 0 \Leftrightarrow k = l = 2$, pri čemu je ponovo h = 0, tako da zaključujemo da su $A_1H_1 = S \cdot D_k^1$ $(k \ge 3)$ jedina maksimalna stabla koja mogu da nastanu proširivanjem Smitovog stabla u c_3 .

Problem smo sveli na traženje svih maksimalnih stabala *H* koja zadovoljavaju uslove 1')-3'), uz dodatni uslov 4') $H \neq S \cdot D_k^1$ ($k \ge 3$).

Kao i kod klase R_1 pretpostavićemo prvo da je \overline{H} jedno od Kokseter-Dinkinovih stabala, koje je prošireno u proizvoljnom čvoru *v* visećom granom, čiji je drugi kraj (u grafu *G*) čvor c_3 . Vrednosti za *h*, koje slede iz Tabela 2.a) i b) predstavićemo odgovarajućim tabelama (Tabela 9.a) i b)):

Tabela 9.a) Vrednosti *h* za grafove $\hat{E}_8, \hat{E}_7, \hat{E}_6$

v	x_1	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	x_5	<i>x</i> ₆	<i>x</i> ₇	x_8
\hat{E}_8	1	-3	-9	-17	-27	-11	-1	-5
\hat{E}_7	3	-2	-9	-18	-6	2	-1	/
\hat{E}_6	5	-1	-9	/	/	3	/	/

Tabela 9.b) Vrednosti *h* za grafove \hat{D}_k i \hat{A}_k

v	x_{i+1}	x_k
\hat{D}_k	4(2-i)	12 - k
\hat{A}_k	-ij+2i+2j+5	/

Lema 3.4. Neka je \overline{H} povezan graf. Tada su uslovi 1'), 3') i 4') ispunjeni ako i samo ako je H jednak jednom od grafova: \hat{E}_{8}^{1} , \hat{E}_{7}^{1} , \hat{E}_{6}^{6} , \hat{E}_{6}^{1} , \hat{E}_{6}^{6} , \hat{D}_{k}^{1} , \hat{D}_{k}^{2} (za $k \ge 4$), \hat{D}_{k}^{3} (za $k \ge 5$), \hat{D}_{k}^{k} (za $k \ge 5$), \hat{A}_{k}^{1} i \hat{A}_{k}^{i+1} (za $i = 1, k \ge 4$; $i = 2, k \ge 5$; $i = 3, 7 \le k \le 12$; $i = 4, 9 \le k \le 11$; i = 5, k = 11).

Dokaz: Iz Tabela 9.a) i b) sledi tvrđenje.

Iz Tabele 1.a) i b) vidimo da grafovi H navedeni u Lemi 3.4. mogu biti tipa

- S:
$$\hat{E}_{8}^{1}$$
, \hat{E}_{7}^{6} , \hat{E}_{6}^{6} , \hat{D}_{k}^{2} $(k \ge 4)$, \hat{D}_{8}^{8} , \hat{A}_{8}^{3} i \hat{A}_{7}^{4}
- NS: $\hat{D}_{k}^{3}(k \ge 5)$, \hat{D}_{k}^{k} $(9 \le k \le 12)$, $\hat{A}_{k}^{3}(k \ge 9)$, $\hat{A}_{k}^{4}(8 \le k \le 12)$, $\hat{A}_{k}^{5}(9 \le k \le 11)$ i
 \hat{A}_{11}^{6}

- PS, tj. E_8^8 , E_7^7 , E_6^6 , E_8^7 , E_7^6 , E_8^1 , E_7^1 , E_6^1 , $D_k^k (k \ge 5)$, D_{k+1}^1 i A_{k+1}^{l} .

Što se tiče kriterijuma za proširenje nekog od grafova *H* iz Leme 3.4. u korenskom čvoru, takvo proširenje može da se izvede dodavanjem nekog od grafova iz Tabele 3. i ako je tako dobijena koalescencija $H \cdot B$, onda *h* i *h'* dobijamo kao $h = P_H P_{\overline{B}} + P_{\overline{H}} P_B - P_{\overline{H}} P_{\overline{B}}$, odnosno $h = (P_H - P_{\overline{H}}) P_{\overline{B}} + P_{\overline{H}} P_B$ i $h' = 2h - P_{\overline{H}} P_{\overline{B}}$. Iz ovoga, analogno razmatranju za klasu R_1 , izvodimo pomoćne kriterijume:

- ako je $P_H - P_{\bar{H}} + P_{\bar{H}} = P_H < 0$, *B* može biti samo stablo tipa A_k^1 ;

- ako je $P_H = 0$, tj. ako je H Smitov graf, jedino maksimalno proširenje je za $B = D_k^1$, $k \ge 3$;

- ako je $-P_H / P_{\overline{H}} + 1 \le P_B / P_{\overline{B}}$ za neko stablo iz Tabele 3., onda se to stablo može dodati na prethodno *H*, jer je uslov ekvivalentan sa $h \ge 0$.

Dakle, ako je graf H, naveden u Lemi 3.4. tipa NS, on je u nekim slučajevima već maksimalan, a u nekim može da se proširi do maksimalnog, ali samo stablom tipa A_k^1 . Svi ovakvi maksimalni grafovi prikazani su u Stavu 3.8.

Stav 3.8. Grafovi $A_1H_2 - A_1H_{16}$ maksimalni su za uslove 1')-4'), gde je $A_1H_2 = \hat{D}_k^3$ $(k \ge 5)$, $A_1H_3 = \hat{D}_{12}^{12}$, $A_1H_4 = \hat{D}_{10}^{10} \cdot A_2^1$, $A_1H_5 = \hat{D}_9^9 \cdot A_4^1$, $A_1H_6 = \hat{A}_{15}^4$, $A_1H_7 = \hat{A}_{11}^5$, $A_1H_8 = \hat{A}_{11}^6$ i $A_1H_9 - A_1H_{16}$ su oblika $\hat{A}_k^{i+1} \cdot A_l^1$, za vrednosti k, i, l iz Tabele 3.2.3.

Tabela 10. Grafovi $A_1H_9 - A_1H_{16}$

k	17	12	11	10	9	9	8	9
i	2	2	2	2	2	3	3	4
l	2	3	4	5	10	2	4	2

Dokaz: Za graf \hat{D}_k^3 važi h = 0, pa je on maksimalan. Isto važi za \hat{D}_{12}^{12} , dok je \hat{D}_{11}^{11} njegov podgraf, a grafovi \hat{D}_{10}^{10} i \hat{D}_9^9 mogu da se prošire, maksimalno sa A_2^1 , tj. A_4^1 . Za graf \hat{A}_k^3 , gde je $k \ge 9$ (tj. $j \ge 6$) uvek važi h = 9, dok je odgovarajući h' = 14 - j, pa prema tome ovakav graf ne može da se proširi za $j \ge 15$, ali takvi grafovi nisu maksimalni, nego su podgrafovi grafa \hat{D}_k^3 . Za proširenje sa A_l^1 dobija se h = -jl + 5l + j + 4 i h' < 0, a odatle vrednosti iz tabele za i = 2. Analizirajući dalje vrednosti za h dobijaju se maksimalni grafovi za i = 3,4,5, s tim što su za i = 3,4

Prelazimo na slučajeve kad je početni graf H tipa PS i posmatramo moguća proširenja. U Stavu 3.9. opisaćemo sva maksimalna proširenja u slučajevima kad je početni graf H jednak jednom od Kokseter-Dinkinovih grafova oblika E_x^y .

Stav 3.9. Grafovi $A_1H_{17} - A_1H_{52}$, oblika $H \cdot X$ (Tabela 13.) su maksimalni za uslove 1')-4').

Dokaz: Ovde je diskusija slična kao kod grafova klase R_1 , tj. pomoću sukcesivnih izračunavanja vrednosti za *h* i *h'* dolazimo do svih mogućih proširenja, vodeći računa da

eliminišemo dobijene rezultate koji daju $S \cdot D_k^1$ ($k \ge 3$) ili njihove podgrafove koji se ne mogu dalje proširiti. Pri tome na osnovu pomoćnog kriterijuma i Tabela 11. (tj. Tabele 3.) možemo odrediti koja proširenja dolaze u obzir.

Н	E_{8}^{8}	E_{7}^{7}	E_{6}^{6}	E_{8}^{7}	E_{7}^{6}	E_8^1	E_7^1	E_6^1	D_k^k	D_k^1	A_k^1
$P_{_B}$ / $\overline{P}_{_B}$	1/8	2/7	1/2	1/4	1/2	1/2	2/3	3/4	4/k	1	(<i>k</i> +1)/ <i>k</i>
$-P_{H} / P_{\bar{H}} + 1$	7/8	5/7	1/2	3/4	1/2	1/2	1/3	1/4	-4/ <i>k</i> +1	0	-1/k

Tabela 11. Pomoćni kriterijum

Prvo posmatramo slučajeve kada je graf *H* jednak jednom od grafova iz skupa $\{E_8^8, E_7^7, E_6^6, E_8^7, E_7^6, E_8^1, E_7^1, E_6^1\}$. Vrednosti *h* i *h'* u slučajevima kad je dodavanje dozvoljeno, tj. *h* > 0, date su u Tabeli 12.

h h'	E_{6}^{6}	E_{7}^{6}	E_8^1	E_{7}^{1}	E_6^1	D_k^k	D_k^1	A_k^1
<i>L</i> ⁸							4	<i>k</i> +8
L_8							-24	16-6k
E^7					1	28-5k	8	2 <i>k</i> +7
L_7					-26	56-17k	-12	14-3 <i>k</i>
E^6	0	0	0	3	6	24-3 <i>k</i>	12	3 <i>k</i> +6
L_6	-36	-24	-12	-12	-12	48-12 <i>k</i>	0	12
E^7					0	16-3 <i>k</i>	4	<i>k</i> +4
L_8					-16	32-10k	-8	8-2 <i>k</i>
E^6		0	0	2	4	16-2 <i>k</i>	8	2 <i>k</i> +4
L_7		-16	-8	-8	-8	32-8k	0	8
F^1			0	1	2	8- <i>k</i>	4	<i>k</i> +2
L_8			-4	-4	-4	16-4 <i>k</i>	0	4
F^1				3	5	12-k	8	2 <i>k</i> +3
L_7				-3	-2	24-5k	4	6+ <i>k</i>
F^1					8	16-k	12	3 <i>k</i> +4
L_6					0	32-6k	8	8+2

Tabela 12. Vrednosti h i h'

Npr. za graf E_8^8 moguća proširenja su sa D_k^1 (podgraf grafa A_1H_1) i A_k^1 tj. sa $A_k^1 \cdot A_l^1$, što je moguće samo za k = l = 2, što ponovo daje podgraf od A_1H_1 . Nastavljajući postupak i eliminišući grafove koji su oblika A_1H_1 ili njihovih pravih podgrafova, bez mogućnosti proširenja, kao i eliminišući prave podgrafove ranije navedenih grafova, dobijaju se grafovi $A_1H_{17} - A_1H_{52}$ (Tabela 13.). \Box

H	X
E_{7}^{7}	E_6^1 , D_5^5 , $A_4^1\cdot A_2^1$
E_{6}^{6}	E_6^6 , E_7^6 , E_8^1 , E_7^1 , D_8^8 , $A_4^1\cdot A_4^1$, $A_6^1\cdot A_3^1$
E_{8}^{7}	$E_6^1, D_5^5, A_4^1 \cdot A_2^1$
E_{7}^{6}	E_7^6 , E_8^1 , E_7^1 , D_8^8 , $A_4^1 \cdot A_4^1$, $A_6^1 \cdot A_3^1$
E_8^1	E_8^1 , E_7^1 , D_8^8 , $A_4^1 \cdot A_4^1$, $A_6^1 \cdot A_3^1$
E_7^1	E_7^1 , D_{12}^{12} , $A_6^1 \cdot A_6^1$, $A_7^1 \cdot A_5^1$, $A_{12}^1 \cdot A_4^1$
$\overline{E_6^1}$	$\boxed{E_6^1 \cdot A_2^1, D_{16}^{16}, D_5^5 \cdot A_2^1, A_8^1 \cdot A_8^1, A_9^1 \cdot A_7^1, A_{12}^1 \cdot A_6^1, A_{20}^1 \cdot A_5^1}$

Tabela 13. Grafovi $A_1H_{17} - A_1H_{52}$

Stav 3.10. Grafovi $A_1H_{53} - A_1H_{99}$ (Prilog II - Tabela 9.1-4.) maksimalni su za uslove 1')-4').

Dokaz:

Tabela 14. Vrednosti h i h'

$D_n^n \cdot$	h	h'		
D_k^k	4n+4k-nk	8(<i>n</i> + <i>k</i>)-3 <i>nk</i>		
D_k^1	16	32-4 <i>n</i>		
A_k^1	4k+n	8k+2n-nk		
$D_k^k \cdot D_l^l$	-3nkl+4(nk+nl+kl)	-7nkl+8(nk+nl+kl)		
$D_k^k \cdot D_l^1$	-8 <i>nk</i> +16(<i>n</i> + <i>k</i>)	-20nk+32(n+k)		
$D_k^k \cdot A_l^1$	-2nkl+nk+4nl+4kl	-3nkl+2nk+8nl+8kl		
$D_k^1 \cdot A_l^1$	4(<i>n</i> +4 <i>l</i> - <i>nl</i>)	4(2 <i>n</i> +8 <i>l</i> -3 <i>nl</i>)		
$A_k^1 \cdot A_l^1$	-nkl+4kl+nk+nl	-3nkl+8kl+2nk+2nl		
$A_k^1 \cdot A_l^1 \cdot A_p^1$	-2nklp+4klp+nkl+nlp+nkp	-5nklp+8klp+2nkl+2nlp+2nkp		

U slučaju $H = D_n^n$, vrednosti h i h' za proširenja data su u Tabeli 14., dok su maksimalni grafovi tipa $D_n^n \cdot D_k^k$, tj. $D_n^n \cdot D_k^k \cdot A_l^1$, dati u Tabeli 9.1. Priloga II ($A_1H_{53} - A_1H_{57}$), tipa $D_n^n \cdot D_k^1 \cdot A_l^1$ u Tabeli 9.2. Priloga II ($A_1H_{58} - A_1H_{60}$) i $D_n^n \cdot A_k^1 \cdot A_l^1$ u Tabeli 9.3. Priloga II $(A_1H_{61} - A_1H_{81})$. Sva ostala proširenja dovode do grafova tipa A_1H_1 ili do njihovih pravih podgrafova, za koje nije moguće dalje proširivanje.

Ako je početni graf *H* jednak D_n^1 , svako proširivanje dovešće do maksimalnog grafa tipa A_1H_1 . Ako je $H = A_n^1$, posmatramo odmah koalescenciju $A_n^1 \cdot A_k^1 \cdot A_l^1 \cdot A_p^1$, za koju je h = -nklp + klp + nlp + nkp + nkl i h' = -3nklp + 2(klp + nlp + nkp + nkl), međutim slučaj $h' \ge 0$ dovodi samo do slučajeva tipa A_1H_1 . Vrednosti koje se dobijaju za $h \ge 0$ date su u Tabeli 9.4. Priloga II i one određuju maksimalne grafove $A_1H_{82} - A_1H_{99}$.

Iz prethodnih stavova sledi Teorema 3.8.

Teorema 3.8. Graf G (Slika 32.), za koji važi da je $G-H = A_1$, je maksimalan refleksivan graf u klasi R_2 ako i samo ako je H jednak stablu $A_1H_1 = S \cdot D_k^1$ (S je proizvoljno Smitovo stablo, a koalescencija formirana u čvoru c_3), ili jednom od stabala $A_1H_2 - A_1H_{99}$ (Stav 3.8.-3.10.).

Prelazimo na potklasu A_3H , tj. grafove tipa G (Slika 32.) kod kojih je $G-H = A_3$. U ovom slučaju jednostavno dobijamo da je $P_G = -(2P_H + P_{\bar{H}})$, pa se određivanje svih maksimalnih refleksivnih grafova ove potklase svodi na određivanje maksimalnih grafova H za koje važi:

1") H je pravi nadgraf Smitovog stabla

2") \bar{H} , odnosno njegove komponente, su pravi podgrafovi Smitovih stabala (tj. $\lambda_1(\bar{H}) < 2$)

3") $2P_H + P_{\bar{H}}$, (tj. kraće: $g \ge 0$).

Teorema 3.9. Graf G (Slika 32.), za koji važi da je $G - H = A_3$, je maksimalan refleksivan graf u klasi R_2 ako i samo ako je H maksimalno stablo za koje važe uslovi 1")-3").

Ako za odgovarajuće stablo *H* važi g = 0, i ako proširivanjem visećom granom u čvoru c_3 formiramo graf *H'*, za njega će važiti $g' = 2(2P_H - P_{\bar{H}}) + 2P_{\bar{H}} = 4P_H < 0$, iz čega vidimo da je *H* maksimalan u pogledu proširivanja u c_3 .

Uslovima dodajemo standardno i četvrti. Naime, neka je *H* jednak koalescenciji nekog Smitovog stabla i stabla *T*, u čvoru c_3 . Iz uslova $h \ge 0$ u ovom slučaju dobija se $2T - 3\overline{T} \ge 0$, pa *T* mora biti tipa PS; tj. $T / \overline{T} \ge 3/2$, iz čega sledi da *T* može jedino biti jednak stablu A_2^1 , po Tabeli 3. Dakle, grafovi $A_3H_1 = S \cdot A_2^1$ maksimalni su za uslove 1)-3), a mi dalje tražimo odgovarajuće grafove *H* za koje važi i dodatni uslov: 4") $H \ne S \cdot A_2^1$.

Ponovo pretpostavljamo da je \overline{H} jedno od Kokseter-Dinkinovih stabala, koje je prošireno u proizvoljnom čvoru *v* visećom granom, čiji je drugi kraj (u grafu *G*) čvor c_3 . Vrednosti za *g*, koje slede iz Tabela 2.a) i b) predstavićemo odgovarajućim tabelama (Tabela 15.a) i b)):

Tabela 15.a) Vrednosti g za $\hat{E}_8, \hat{E}_7, \hat{E}_6$

v	x_1	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₆	<i>x</i> ₇	x_8
\hat{E}_8	1	-7	-19	-35	-55	-23	-3	-11
\hat{E}_7	4	-6	-20	-38	-14	2	-4	/
\hat{E}_6	7	-5	-27	/	/	3	/	/

Tabela 15.b) Vrednosti g za \hat{D}_n i \hat{A}_n

v	x_{i+1}	x_k
\hat{D}_n	4(3-2i)	2(10-n)
\hat{A}_n	-2ij+3i+3j+8	/

Lema 3.5. Neka je \overline{H} povezan graf. Tada su uslovi 1"), 3") i 4") ispunjeni ako i samo ako je H jednak jednom od grafova: \hat{E}_{8}^{1} , \hat{E}_{7}^{1} , \hat{E}_{6}^{6} , \hat{D}_{n}^{1} , \hat{D}_{n}^{2} (za $n \ge 4$), \hat{D}_{n}^{n} (za $5 \le n \le 10$), \hat{A}_{n}^{1} i \hat{A}_{n}^{i+1} (za $i = 1, n \ge 4$; $i = 2, 5 \le n \le 17$; $i = 3, 7 \le n \le 9$; i = 4, n = 9).

Dokaz: Sledi iz Tabela 15.a) i b).

Kao i dosada, iz Tabele 15.a) i b) određujemo tip grafa H i zaključujemo da grafovi H navedeni u Lemi 3.5. mogu biti tipa

- S:
$$\hat{E}_{8}^{1}$$
, \hat{E}_{6}^{6} , \hat{D}_{n}^{2} $(n \ge 4)$, \hat{D}_{8}^{8} , \hat{A}_{8}^{3} i \hat{A}_{7}^{4}
- NS: \hat{D}_{n}^{n} $(n = 9, 10)$, $\hat{A}_{n}^{3}(9 \le n \le 17)$, $\hat{A}_{n}^{4}(n = 8, 9)$ i \hat{A}_{9}^{5}
- PS, tj. E_{8}^{8} , E_{7}^{7} , E_{6}^{6} , E_{8}^{7} , E_{7}^{6} , E_{8}^{1} , E_{7}^{1} , E_{6}^{1} , $D_{k}^{k}(k \ge 5)$, D_{k+1}^{1} i A_{k+1}^{1}

Pošto smo grafove tipa S već razmotrili, u Stavu 3.10. opisaćemo sve slučajeve sa početnim grafom tipa NS, a u Stavu 3.11. sa početnim grafom tipa PS.

Stav 3.11. Grafovi $A_3H_2 = \hat{D}_{10}^{10}, A_3H_3 = \hat{A}_{17}^3, A_3H_4 = \hat{A}_9^4$ i $A_3H_5 = \hat{A}_9^5$ maksimalni su za uslove 1")-4").

Dokaz: Za navedene grafove tipa NS u sledećoj tabeli navodimo vrednosti za g i g' = 4P dobijene na osnovu Tabele 2.a) i b).

	\hat{D}_{10}^{10}	\hat{D}_9^9	$\hat{A}_n^3 (6 \le j \le 14)$	$\hat{A}_n^4(j=4,5)$	\hat{A}_{9}^{5}
g	0	2	14 – <i>j</i>	17–3 <i>j</i>	0
g'	-8	-4	10 - 2j	24–8 <i>j</i>	-20

Tabela 16. Vrednosti g i g'

Očigledno je da je uvek g' < 0, tako da proširenja nema, pa na osnovu Tabele 16. dobijamo maksimalne grafove.

Stav 3.12. Grafovi $A_3H_6 - A_3H_{13}$ (Tabela 18.), $A_3H_{14} = D_5^5 \cdot D_5^5$, $A_3H_{15} = D_8^8 \cdot D_k^1$, $A_3H_{16} - A_3H_{22}$ (Tabela 10.1. Prilog II), $A_3H_{23} = D_n^1 \cdot A_6^1 \cdot A_3^1$, $A_3H_{24} = D_n^1 \cdot A_4^1 \cdot A_4^1$ i $A_3H_{25} - A_3H_{37}$ maksimalni su za uslove 1")-4"). **Dokaz:** Kao i dosada, polazimo od koalescencije $H \cdot B$ gde su oba stabla tipa PS. Za ovakvu koalescenciju uslov $g \ge 0$ ekvivalentan je uslovu $-P_H / P_H + 3/2 \le P_B / P_B$, a odgovarajuće vrednosti navedene su u Tabeli 17., na osnovu Tabele 3. Na osnovu ovog pomoćnog uslova nalazimo odgovarajuća stabla *B*, a vrednosti *g* i *g'* za proširenja izračunavaćemo npr. pomoću Tabele 12. (jer je g = h') i Tabele 2. Prilog II (jer je $g' = 4P_{HB}$).

Tabela 17. Pomoćni kriterijum

Н	E_{8}^{8}	E_{7}^{7}	E_{6}^{6}	E_{8}^{7}	E_{7}^{6}	E_8^1	E_{7}^{1}	E_6^1	D_n^n	D_n^1	A_n^1
$P_{\scriptscriptstyle B}$ / $\overline{P}_{\scriptscriptstyle B}$	1/8	2/7	1/2	1/4	1/2	1/2	2/3	3/4	4/k	1	(<i>k</i> +1)/ <i>k</i>
$-\frac{P_H}{P_{\bar{H}}} + \frac{3}{2}$	11/8	17/14	1	5/4	1	1	5/6	3/4	$-\frac{4}{n}+\frac{3}{2}$	1/2	$-\frac{1}{n} + \frac{1}{2}$

Eliminišući slučajeve kad se dobija graf A_3H_1 ili njegovi pravi podgrafovi koji ne mogu da se prošire, dobijamo sve maksimalne grafove $A_3H_6 - A_3H_{13}$ tipa $E_x^y \cdot X$, koje navodimo u Tabeli 18.

Tabela 18. Grafovi X

•	E_{7}^{7}	E_{6}^{6}	E_{8}^{7}	E_{7}^{6}	E_8^1	E_7^1	E_6^1
X	A_4^1	D_n^1	A_4^1	D_n^1	D_n^1	D_n^1	E_{6}^{1}, D_{5}^{5}

Jedini maksimalni grafovi tipa $D_n^n \cdot D_k^k$ i $D_n^n \cdot D_k^1$ su grafovi $A_3H_{14} = D_5^5 \cdot D_5^5$ i $A_3H_{15} = D_8^8 \cdot D_k^1$. Svi maksimalni grafovi tipa $D_n^n \cdot A_k^1$ dati su u Tabeli D3 10.1., a moguća proširenja dovođe do grafa A_3H_1 . Jedini maksimalni grafovi tipa $D_n^1 \cdot A_k^1 \cdot A_l^1$ su $A_3H_{23} = D_n^1 \cdot A_6^1 \cdot A_3^1$ i $A_3H_{24} = D_n^1 \cdot A_4^1 \cdot A_4^1$, dok su svi maksimalni grafovi tipa $A_n^1 \cdot A_k^1 \cdot A_l^1$ dati u Tabeli 10.2. Priloga II, pri čemu u oba slučaja, kao i malopre, sva moguća proširenja dovođe do grafova tipa A_3H_1 .

Sada možemo iskazati odgovarajuću teoremu.

Teorema 3.10. Graf G (Slika 32.), za koji važi da je $G - H = A_3$, je maksimalan refleksivan graf u klasi R_2 ako i samo ako je H jednak stablu $A_3H_1 = S \cdot A_2^1$ (S je proizvoljno Smitovo stablo, a koalescencija formirana u čvoru c_3), ili jednom od stabala $A_3H_2 - A_3H_{37}$ (Stav 3.11.-3.12.).

Što se tiče potklase $A_{12}H$, tj. grafova tipa G (Slika 32.) kod kojih je $G-H = A_{12}$, interesantno je da se u ovom slučaju dobija $P_G = -4(P_H + P_{\bar{H}})$, tj. uslov $P_G \le 0$ se svodi na $h \ge 0$, pa odmah iskazujemo teoremu.

Teorema 3.11. Graf G (Slika 32.), za koji važi da je $G-H = A_{12}$, je maksimalan refleksivan graf u klasi R_2 ako i samo ako je H jednak stablu $A_1H_1 = S \cdot D_k^1$ (S je proizvoljno Smitovo stablo, a koalescencija formirana u čvoru c_3), ili jednom od stabala $A_1H_2 - A_1H_{99}$ (Stav 3.8.-3.10.).

U slučaju potklase $A_{11}H$ dobija se $P_G = -((m+n+1)P_H + (m+n+2)P_{\bar{H}})$ što je slučaj koji zahteva obimniju analizu, pa ga sada izostavljamo.

Na osnovu izvršene analize, uz data ograničenja, iskazujemo teoremu koja obuhvata prethodne slučajeve.

Teorema 3.12. Graf *G* (Slika 32.) klase R_2 u kome su opterećena bar dva čvora spoljašnjih kontura različita od *c*-čvorova (sa izuzetkom grafova kod kojih je opterećen po jedan crni čvor na svakoj spoljašnjoj konturi i to visećom granom) je maksimalni refleksivni graf u klasi R_2 ako i samo ako je ispunjen jedan od sledećih uslova:

1) G je jednak jednom od grafova A_4R_2 , A_7R_2 , $A_{13}R_2$ (Slika 33.),

2) $G-H = A_1$ ili $G-H = A_{12}$, gde je H jedan od grafova $A_1H_1 - A_1H_{99}$ (Teorema 3.8.)

3) $G - H = A_3$, gde je H jedan od grafova $A_3H_1 - A_3H_{37}$ (Teorema 3.10.)

Zaključujemo da predmet daljih ispitivanja u okviru klase R_2 , osim grafova kod kojih je $G-H = A_{11}$ treba da budu grafovi kod kojih je opterećen samo jedan čvor sa spoljašnjih kontura različit od *c*-čvorova (beli ili crni), kao i grafovi kod kojih su spoljašnje konture slobodne. U ovom poslednjem slučaju predstavićemo takođe neke parcijalne rezultate.

Posmatraćemo slučaj kad je samo čvor c_3 osnovnog grafa dodatno opterećen stablom *C*. Za takav graf G_1 važi: $P_{G_1} = -mn(P_C + 2P_{\overline{C}})$. Prema Teoremi 3.3. sledi da ako je graf *C* koalescencija dva Smitova stabla, onda je graf G_1 maksimalan refleksivan graf u klasi R_2 . Na osnovu toga i na osnovu ograničenja na *RS*-neodlučive grafove, *C* mora biti takvo stablo da važi:

- 1) $P_{C}(2) + 2P_{\bar{C}}(2) \ge 0$ (kraće, $c \ge 0$)
- 2) C je (pravi) nadgraf nekog Smitovog stabla
- 3) komponente grafa $\overline{C} = C c_1$ su pravi podgrafovi Smitovih stabala
- 4) $C \neq S_1 \cdot S_2$ (gde su S_1 i S_2 Smitova stabla).

Kako smo u delu 3.2. odredili sva maksimalna stabla C za koja važe uslovi 1)-4), sada možemo dokazati Teoremu 3.13.

Slika 34. Graf G_1

Teorema 3.13. Neka je graf G_1 (Slika 34.) takav da je njegov podgraf C jedan od grafova $Q_1 - Q_{187}$, tj. $W_1 - W_{1114}$ ili jednak koalescenciji dva proizvoljna Smitova stabla u čvoru c_3 . Tada je G_1 maksimalan refleksivan graf u klasi R_2 .

Dokaz: Uočimo da je graf G_1 oblika $C(C_m, C_n, C)$ i da se, prema tome, pomoću preslikavanja τ slika u graf $\tau(G_1) = G(C_m, c_2, C)$. Pri tome, po Teoremi 2.4. važi: $\operatorname{sgn}(\lambda_2(G_1)-2) = \operatorname{sgn}(\lambda_2(\tau(G_1)-2))$, pa po Teoremama 3.3., 3.5. i 3.6. sledi da je G_1 refleksivan, kao i da se, zbog maksimalnosti grafa C, ne može proširiti u čvorovima grafa C (uključujući i c_3), kao ni u čvorovima c_1 i c_2 , zbog $\tau \alpha$ -ekvivalentnosti.

Maksimalnost ovog grafa u klasi R_2 dokazaćemo razmatranjem različitih slučajeva dodavanja visećih grana i svođenjem na kontradikciju. U slučaju dodavanja viseće grane na crni čvor konture C_n i formiranja i dalje refleksivnog grafa E_1 (Slika 35.a)), važiće $P_{E_1} = -m((n+1)P_C + (n+2)P_{\overline{C}}) \le 0$. Uočimo, međutim graf E_2 (Slika 35.b)) koji je nastao proširenjem početnog grafa oslanjanjem puta dužine n na čvor c_3 . Po pretpostavkama, za njega je $\lambda_3 < 2$ i $P_{E_2} = -mn((n+1)P_C + (n+2)P_{\bar{C}}) = nP_{E_1} \le 0$, pa je i on refleksivan, što se kosi sa maksimalnošću grafa C. Analogno, i u slučaju dodavanja viseće grane na beli čvor konture C_n i formiranja grafa E_3 (Slika 35.c)), za koji da je refleksivan, pretpostavljamo tj. da važi $P_{E_3} = -m((-n_1n_2 + 2n_1 + 2n_2)P_C + (-2n_1n_2 + 3n_1 + 3n_2)P_{\bar{C}}) \le 0, \text{ možemo uočiti graf } E_4$ $\lambda_3 < 2$ (Slika 35.d)) koji je i za $P_{E_4} = -m((-n_1n_2 + 2n_1 + 2n_2)P_C + (-2n_1n_2 + 3n_1 + 3n_2)P_{\bar{C}}) = P_{E_3} \le 0, \text{ pa je i}$ on refleksivan. Odatle sledi da graf C nije maksimalan za uslove 1)-3), što dovodi do kontradikcije. Dakle, graf G_1 je maksimalni refleksivni graf u klasi R_2 . \Box

Slika 35. Proširenja grafa G_1

Teorema 3.14. Neka je graf G_2 (Slika 36.) takav da je njegov podgraf C jedan od grafova $Q_1 - Q_{187}$, tj. $W_1 - W_{1114}$, ili koalescencija dva proizvoljna Smitova stabla u čvoru c_1 . Tada je G_2 maksimalan refleksivan graf u klasi R_2 .

Slika 36. Graf G_2

Dokaz: Ako je C jedan od navedenih grafova, graf G_2 je refleksivan, kao $\tau \alpha$ ekvivalentan grafu G_1 iz prethodne teoreme. Maksimalnost ćemo dokazati tako što ćemo dokazati da je nemoguće graf G_1 proširiti visećom granom tako da ostane refleksivan. Dodajmo viseću granu prvo na čvor c_2 i nazovimo dobijeni graf E_5 . Za novi graf važiće $P_{E_5} = mn(-4P_C + P_{\bar{C}}) > 0$, jer je $P_C < 0$ i $P_{\bar{C}} > 0$. Ako dodamo viseću granu na crni čvor konture C_n i označimo dobijeni graf sa E_6 , za novi graf dobijamo $P_{E_6} = mn(-4P_C + P_{\bar{C}}) + m(n-1)(2P_{\bar{C}} + P_C)$. Prema prethodnom, prvi sabirak je pozitivan, a zbog uslova 1)-3) drugi sabirak nenegativan, pa je $P_{E_6} > 0$. Ako viseću granu dodamo C_n i dobijemo graf E_7 , čvor konture na beli važiće $P_{E_7} = m(P_C(n_1n_2 - 4n_1 - 4n_2) + P_{\overline{C}}(2n_1n_2 + n_1 + n_2 + 2))$. Odavde, zbog $P_{\overline{C}} \ge -\frac{P_C}{2}$, sledi $P_{E_7}(2) = \frac{mP_C}{2}(-9n_1 - 9n_2 - 2) > 0$, jer je $P_C < 0$. Ako se viseća grana doda na crni čvor konture C_m tako da se dobije graf E_8 , važiće $P_{E_8}(2) = n(P_C(-m-1) + P_{\overline{C}}(-m-2))$, odakle kao i u prethodnim slučajevima sledi $P_{E_8}(2) = \frac{nP_C}{2}(-m) > 0$. Ako se viseća grana čvor konture C_m i tako dobije graf E_9 , doda na beli važiće $P_{E_{q}} = n(P_{C}(m_{1}m_{2} - 2m_{1} - 2m_{2}) + P_{\bar{C}}(2m_{1}m_{2} - 3m_{1} - 3m_{2})),$ odakle sledi $P_{E_9}(2) = \frac{nP_C}{2}(-m_1 - m_2) > 0$. Na čvorove grafa *C* kao i na čvor c_3 nema smisla dodavati

viseće grane, jer je on maksimalan za uslove 1)-4), odakle sledi da je graf G_1 maksimalan refleksivan u klasi R_2 .

Ovde je prirodno postaviti pitanje da li se, ako se korenski graf *C* iz prethodnih teorema cepanjem u korenu podeli na dva stabla *A* i *B*, stablo *A* osloni na npr. čvor c_3 , a stablo *B* na čvor c_2 , takođe dobije maksimalni refleksivni graf u klasi R_2 ? Ispostavlja se da u opštem slučaju dobijeni graf mora biti refleksivan, zbog $\tau \alpha$ -ekvivalencije, ali da ne mora biti maksimalan, kao što pokazuju i izuzeci u Teoremi 3.3. Interesantno je uočiti sledeće: ako se u novom grafu, dobijenom posle cepanja i oslanjanja stabala *A* i *B* doda viseća grana na čvor c_1 i dobije još uvek refleksivan graf G_2 (Slika 37.b), po Lemi 2.4. važi $\text{sgn}(\lambda_2(G_2)-2) = \text{sgn}(\lambda_2(G_3)-2)$, gde je graf G_3 prikazan na Slici 37.c), a $G_3 \sim_{\tau \alpha} G_4$ (Slika 37.d)), pa je i graf G_4 refleksivan.

Slika 37. "Ubacivanje" nove grane

Dakle, graf G_1 je maksimalni refleksivni graf, a ako graf G_2 nije maksimalan refleksivan graf, nego dozvoljava dodavanje viseće grane na čvor c_1 , graf G_4 će takođe biti maksimalan refleksivan graf. Poredeći grafove G_1 i G_4 vidimo da je došlo do "ubacivanja" grane. Jedan primer (od mnogih) za ovakvu pojavu je sledeći: $C = A \cdot B$ gde je $A = D_6^6 \cdot D_6^6$ i $B = E_6^1$. U ovom slučaju je G_1 graf za koji je $C = E_6^1 \cdot D_6^6 \cdot D_6^6$, a G_4 graf za koji je $C = E_7^1 \cdot D_6^6 \cdot D_6^6$ i oba grafa G_1 i G_4 su maksimalni refleksivni grafovi u klasi R_2 .

Slika 38. Osnovni graf klase R_3

Graf koji pripada klasi R_3 ima cikličku strukturu prikazanu na Slici 38. Centralna kontura je dužine 4, sa čvorovima c_1 , c_2 (na koje su naslonjene spoljašnje konture C_m i C_n , respektivno), c_3 i c_4 . Svi čvorovi osnovnog grafa (Slika 38.), koji je kao podgraf sadržan u svakom grafu ove klase, mogu dodatno biti opterećeni stablima. Čvorove spoljašnjih kontura susedne čvorovima centralne konture, tzv. *c*-čvorovima, označićemo kao crne, a ostale čvorove spoljašnjih kontura različite od *c*-čvorova, kao bele.

Opisaćemo sve maksimalne refleksivne grafove ove klase i to prvo one kod kojih je bar po jedan čvor svake spoljašnje konture dodatno opterećen, a zatim one kod kojih je bar jedna spoljašnja kontura slobodna.

Pomoću tri sledeće leme analiziraćemo različite slučajeve opterećivanja čvorova spoljašnjih kontura.

Lema 3.6. Neka je istovremeno opterećen bar po jedan čvor obeju spoljašnjih kontura različit od c_1 i c_2 . Tada je $\lambda_2(G) > 2$.

Slika 39. Proširenja osnovnog grafa (Lema 3.6.)

Dokaz: Neka su istovremeno opterećena 2 bela čvora na različitim konturama (Slika 39.a). Odgovarajući biciklički graf $G-c_4$ refleksivan je samo za $k_1 = l_1 = k_2 = l_2 = 1$

[33], dok je u ostalim slučajevima $\lambda_2(G-c_4) > 2$, pa će biti i $\lambda_2(G) > 2$. Međutim, i u slučaju kad je $k_1 = l_1 = k_2 = l_2 = 1$, $P_G = 48 > 0$, a pošto je G nadgraf Smitovog grafa (npr. C_m), to znači da mora biti $\lambda_2(G) > 2$.

Neka su istovremeno opterećena 2 crna čvora na različitim konturama (Slika 39.b). Tada je $P_G = 3mn - 2m - 2n - 4$, što je strogo pozitivno za $m, n \ge 3$, pa je $\lambda_2(G) > 2$.

Neka su istovremeno opterećeni beli čvor na jednoj konturi (npr. C_m) i crni čvor na drugoj (C_n) konturi (Slika 39.c). Tada je $P_G = (i + j)(3n - 2) + 2ij(n + 2) + 4n - 8$, što je za $n \ge 3$, $i, j \ge 1$ strogo pozitivno, pa je $\lambda_2(G) > 2$.

Na osnovu Leme 3.6. možemo zaključiti da ako su opterećena bar dva čvora spoljašnjh kontura različita od *c*-čvorova, onda oni moraju biti na istoj konturi. Takođe, na osnovu Leme 3.6. zaključujemo da graf klase R_3 može biti refleksivan jedino ako je na jednoj od spoljašnjih kontura (npr. C_n) opterećen samo *c*- čvor (tj. čvor c_2).

Lema 3.7. Neka je u grafu *G* opterećen čvor c_2 i bar jedan čvor konture C_m različit od c_1 . Tada je *G* refleksivan ako i samo ako je on podgraf jednog od grafova $G_1 - G_5$ (Slika 41.).

Dokaz: Neka je opterećen beli čvor konture C_m i čvor c_2 (Slika 40.a). Tada je $P_G = n(6m_1m_2 + m_1 + m_2 - 4) > 0$, pa je $\lambda_2(G) > 2$.

Slika 40. Proširenja osnovnog grafa (Lema 3.7.)

Neka su opterećena dva crna čvora konture C_m i čvor c_2 (Slika 40.b). Tada je $P_G = 8n(m+2) > 0$, pa je $\lambda_2(G) > 2$.

Neka je opterećen jedan crni čvor na C_m i čvor c_2 (Slika 40.c). Tada je $P_G(2) = n(m-6)$, pa je graf G refleksivan za m=3,4,5,6. Da bismo odredili maksimalne refleksivne grafove primetimo prvo da se ni opterećeni crni čvor, ni čvor c_2 ne mogu opteretiti putem dužine 2: u prvom slučaju biće $P_G = 4n(2m-3)$, a u drugom $P_G = 4n(m-2)$, što je strogo pozitivno za $m, n \ge 3$, pa je $\lambda_2(G) > 2$. Takođe, crni čvor ne može biti stepena 4 (bilo bi $P_G = 4n(7m-6)$), niti čvor c_2 može biti stepena 6 ($P_G = 4n(3m-2)$), iz istog razloga. Čvor c_1 se takođe ne može dodatno opteretiti granom čvor c_3 ($P_G = 3n(m-3)$), za m=3, i čvor c_4 ($P_G = 2n(m-4)$), za m=3,4, ali ne oba istovremeno ($P_G = n(5m-12) > 0$). Dakle, za m=6 i m=5 maksimalni refleksivni grafovi su G_1 i G_2 (Slika 41.), za m=4 maksimalan je G_3 (Slika 41.), a za m=3 postoje dva maksimalna refleksivna grafa G_4 i G_5 (Slika 41.), pri čemu se čvor c_4 može maksimalno opteretiti putem dužine 3, a čvor c_3 samo jednom granom.

Slika 41. Grafovi $G_1 - G_5$

Lema 3.7. Neka su u grafu G od čvorova spoljašnjih kontura opterećeni jedino čvorovi c_1 i c_2 . Tada je graf G refleksivan ako i samo ako je podgraf jednog od grafova $G_6 - G_{19}$ (Slike 43. i 46.).

Dokaz: Neka su čvorovi centralne konture opterećeni putevima dužine l_i , i = 1, 2, 3, 4, pri čemu su $l_3, l_4 \ge 0$, a $l_1, l_2 \ge 1$. Tada važi:

$$P_G = mn[l_1 l_2 (l_3 + 2)(l_4 + 2) - (l_1 + l_3 + 2)(l_2 + l_4 + 2)].$$

A) Pretpostavimo prvo da su sva 4 c-čvora dodatno opterećena tj. da je l₁, l₂, l₃, l₄ ≥1 i da je l₃ = l₄ =1. Tada je P_G(2) = mn(8l₁l₂ - 3l₁ - 3l₂ -9), pa iz P_G(2) ≤0 zbog l₂ ≥1 sledi l₁ ≤2. Neka je npr. l₁ ≤ l₂; tada je l₁ =1 dok je l₂ ≤2. Dalje razmatramo da li l₃ i l₄ mogu biti i veći od 1 za dozvoljene vrednosti l₁ i l₂.

1) Neka je $l_1 = 1$, $l_2 = 2$. Tada je $P_G(2) = mn(l_3l_4 + l_4 - 4) \le 0$ za $l_4(l_3 + 1) \le 4$, što daje sledeće mogućnosti: $l_3 = 1$, iz čega sledi $l_4 \le 2$, odakle se dobija maksimalan graf G_6 (Slika 43); $l_3 = 3$, a $l_4 = 1$, što daje maksimalan graf G_7 (Slika 43).

2) Neka je $l_1 = l_2 = 1$. Tada je $P_G(2) = mn(-l_3 - l_4 - 5) < 0$ za sve $l_3, l_4 \ge 1$. Sada se postavlja pitanje da li se na puteve dužine l_3 i l_4 mogu dodati nove grane. Neka je *G* graf sa Slike 42:

Slika 42. Dodavanje nove grane ne put dužine l_4

Za *G* važi $P_G = mn[(j-1)(i+l_3)+2j-6]$, pa je $P_G \le 0$ ako je j=1, a *i* i l_3 proizvoljni, ili ako je j=2 i $i+l_3 \le 2$.

a) Neka je j=1, a i i l_3 proizvoljni. Ovde se i na pretposlednji čvor puta oslonjenog na c_3 može dodati grana, što je ujedno i jedina mogućnost da su oba puta oslonjena na c_3 i na c_4 dodatno opterećena. Dobija se graf G_8 (Slika 43).

b) Neka je $j = 2, i = 0, l_3 = 2$. Dobija se maksimalni graf G_9 (Slika 43).

c) Neka je $j = 2, i = 1, l_3 = 1$. Dobija se maksimalni graf G_{10} (Slika 43).

Slika 43. Grafovi $G_6 - G_{10}$

B) U drugom delu analiziramo slučajeve kad je $l_1 \neq 0$, $l_2 \neq 0$ i bar jedan od l_3 , l_4 je nula.

Da bismo pronašli maksimalno dozvoljeno opterećenje čvorova c_1 i c_2 , posmatramo prvo slučaj $l_3 = l_4 = 0$. Tada važi: $P_G = mn(3l_1l_2 - 2l_1 - 2l_2 - 4) \le 0$, što je moguće u sledećim slučajevima: za $l_1 = 1$, $l_2 \le 6$; za $l_1 = 2$, $l_2 \le 2$ i za $l_1 = 3, 4, 5, 6$, $l_2 \le 1$. Putevi oslonjeni na c_1 i c_2 ne mogu se dodatno opterećivati, jer bi i tom slučaju za graf *G* (Slika 44.) važilo $P_G = mn((9-i)j+i-5)$, što je zbog $j \ge 1$ i $i \le 5$ veće od 0. Međutim, čvor c_3 , tj. c_4 , može se u nekim slučajevima dodatno opteretiti.

Slika 44. Dodavanje nove grane ne put dužine l_1

Diskutovaćemo po dozvoljenim vrednostima l_1 i l_2 , koristeći (za $l_3 = 0$ i l_1 , l_2 , l_4 proizvoljno) $P_G = mn[2l_1l_2(l_4 + 2) - (l_1 + 2)(l_2 + l_4 + 2)]$.

Za $l_1 = 1$ i $l_2 = 4,5,6$ sledi $l_4 = 0$, pa se dobija maksimalni graf G_{11} (Slika 46). Za $l_1 = 1$ i $l_2 = 3$ sledi $l_4 = 1$, bez mogućnosti proširenja novom granom u čvoru c_4 , što daje maksimalni graf G_{12} (Slika 46). Za $l_1 = 1$ i $l_2 = 2$ sledi $l_4 \le 4$, ali dodavanje nove grane u bilo kom čvoru puta oslonjenog na c_4 nije moguće ni za jedno $l_4 \in \{1, 2, 3, 4\}$, pa se dobija maksimalni graf G_{13} (Slika 46). Neka je $l_1 = 1, l_2 = 1$. U

ovom slučaju je l_4 proizvoljno, pa zato posmatramo proširivanje ovog puta novim granama, vodeći računa da, zbog RS-teoreme, možemo opteretiti samo jedan čvor različit od c_4 , kao i da taj čvor ne sme imati stepen veći od 3 (Slika 45).

Slika 45. Proširivanje puta dužine l_4

Za ovakav graf važi $P_G = mn(ijk+3jk-i-j-k-5)$, pa iz $P_G \le 0$ za $k \le j$ sledi k=1. Dalje za i=0 sledi $j \le 3$ (G_{14} - Slika 46), za i=1 sledi $j \le 2$ (podgraf grafa G_{10}), za i=2 takođe sledi $j \le 2$ (G_{15} - Slika 46.) i za $i \ge 3$ sledi j=1 (podgraf grafa G_8). Za $l_1 = l_2 = 2$ dobija se $l_4 = 0$ (G_{16} - Slika 46.).

U narednim slučajevima mora biti $l_2 = 1$, pri čemu je $l_1 = 2,3,4,5,6$, pa je $P_G = mn(l_1l_4 + l_1 - 2l_4 - 6)$. Za $l_1 = 2$ sledi $P_G = -4mn$, ali se nova grana na put dužine l_4 može dodato samo tako da formira maksimalni graf G_{17} . Za $l_1 = 3$ sledi $l_4 \le 3$, ali se ni u jednom slučaju taj put ne može proširiti, tj. graf G_{18} je maksimalan. Za $l_1 = 4$ sledi $l_4 = 1$ (graf G_{19}), a za $l_1 = 5,6$ sledi $l_4 = 0$, pa nema novih maksimalnih grafova. \Box

Slika 46. Grafovi $G_{11} - G_{19}$

Na osnovu tri prethodne leme može se dokazati sledeća teorema.

Teorema 3.15. Graf klase R_3 kod koga su čvorovi obeju spoljašnjih kontura opterećeni dodatnim granama je refleksivan ako i samo ako je podgraf jednog od sledećih grafova: $G_1 - G_{19}$ (Slike 41., 43. i 46.).

Prelazimo na ispitivanje refleksivnosti grafova klase R_3 kod kojih čvorovi jedne od spoljašnjih kontura, npr. C_n (uključujući i čvor c_2), nisu opterećeni dodatnim granama. Na osnovu osobina preslikavanja φ sledi Teorema 3.16.

Teorema 3.16. Neka je graf G (Slika 47.) takav da je njegov podgraf A nadgraf konture C_m , a njegovi podgrafovi B i D stabla. Tada je graf G maksimalan refleksivan graf u klasi R_3 ako i samo ako je njegov podgraf $H = G \setminus D$ maksimalan refleksivan u klasi bicikličkih grafova sa mostom, a D proizvoljno Smitovo stablo.

Slika 47. Graf G

Dokaz: \Subset Kako je $H = \varphi(G)$, ako je H refleksivan graf, po Teoremi 2.5. važiće $\lambda_2(G) = 2$, pa je i G refleksivan. G je očigledno i maksimalan, jer ako postoji nadgraf grafa G koji je refleksivan, on bi pod uslovima teoreme morao da nastane proširivanjem podgrafa H, a to narušava maksimalnost H.

⇒ Ako je *G* maksimalan refleksivan graf u klasi R_3 , onda je i njegov podgraf *H* refleksivan. Pretpostavimo da *H* nije maksimalan, tj. da se on može proširiti do grafa H_1 , koji ima ista svojstva (*A* je nadgraf konture C_m , a *B* podgraf Smitovog stabla) i koji je takođe refleksivan. Tada bi za njemu odgovarajući graf G_1 , nadgraf grafa G, važilo $\lambda_2(G_1) \le 2$, što je u kontradikciji sa maksimalnošću grafa *G*, iz čega sledi da je *H* maksimalan graf u klasi bicikličkih grafova sa mostom.

Graf D ne može biti nadgraf nekog Smitovog stabla, jer bi po Teoremi o preplitanju sledilo da je $\lambda_2(G) > 2$. Neka je D podgraf nekog Smitovog stabla S i neka je G_2 pravi nadgraf grafa G, u kome je stablo D prošireno do Smitovog stabla S, tako da je $G \setminus D = G_2 \setminus S$. Tada, prema Teoremi 2.5., sledi $\lambda_2(G_2) \le 2$, što je u kontradikciji sa maksimalnošću grafa G. Dakle, D mora biti Smitovo stablo. \Box

Pošto su u [33] već opisani svi maksimalni refleksivni biciklički grafovi sa mostom, možemo samo konstatovati koji od njih zadovoljavaju uslove da mogu da budu podgraf H, a to znači da je u njima jedna kontura slobodna (npr. C_n) i da je čvor c_2 , koji je kraj mosta i na kome je slobodna kontura, stepena 4 (tj. opterećen bar još jednom visećom granom).

Ako je pri tome opterećen bar jedan čvor konture C_m različit od čvora c_1 , takve uslove zadovoljavaju grafovi A_2 , $B_1 - B_{11}$, $C_1 - C_{10}$, $C_{16} - C_{41}$. Ovo daje 48 grafova $G_{18} - G_{65}$, koji odgovaraju maksimalnim refleksivnim grafovima $H_1 - H_{48}$ tipa Q_2^- sa 4 konture. Međutim, iako u grafovima $G_{18} - G_{65}$ jeste jedna slobodna kontura grafova $H_1 - H_{48}$ zamenjena Smitovim stablom, oni se ne mogu povezati Teoremom o zameni jer nisu ispunjeni uslovi teoreme (ako bi se kod H-grafova odstranili svi čvorovi jedne spoljašnje slobodne konture osim čvora koji pripada i centralnoj konturi, karakteristični polinom dobijenog grafa ne bi u tački 2 bio manji od 0). Ako nijedan čvor konture različit od c_1 nije opterećen, svi grafovi $D_1 - D_{35}$ zadovoljavaju uslov da budu podgraf H. Ovo određuje grafove $G_{66} - G_{100}$.

Slika 48. Graf H_2

Do ovakvih maksimalnih refleksivnih grafova se moglo doći i direktno. Koristeći Teoremu 2.5., možemo opisivati graf H_2 (Slika 48). Iz $\lambda_2(H_2) \le 2$ sledi da je

 $P_{H_2}(2) = -n(P_F(2) + 2P_{\overline{F}}(2)) \le 0$, pa problem svodimo na određivanje maksimalnog grafa *F* koji zadovoljava uslove:

- 1) $P_F(2) + 2P_{\bar{F}}(2) \ge 0$ (kraće: $c \ge 0$)
- 2) F je nadgraf konture C_m
- 3) komponente grafa \overline{F} su podgrafovi Smitovih stabala.

Prednost ovog metoda je u tome što bi bilo dovoljno da se odredi svih 25 grafova F iz prve grupe, koji zadovoljavaju ove uslove (a to su oni koji se pojavljuju kao podgrafovi u grafovima A_2 , B_1 , B_3 , B_4 , B_6 , B_8 , B_{10} , B_{11} , C_3 , C_5 , C_7 , C_9 , C_{10} , $C_{23} - C_{34}$), dok bi ostala 23 grafa bila određena cepanjem odgovarajućeg F u čvoru c_1 i oslanjanjem dobijenih podgrafova na čvorove c_1 i c_3 . Što se tiče druge grupe, gde je $F = C_m \cdot B$, iz uslova $c \ge 0$ bi se odmah dobilo da je $P_B(2) \le 0$, pa je očigledno da su maksimalni grafovi B upravo Smitova stabla, dok se grafovi $G_{66} - G_{100}$ dobijaju njihovim cepanjem i prelivanjem između čvorova c_1 i c_3 .

Zanimljivo je i da se grafovi $G_6 - G_{19}$ mogu kraće opisati koristeći jednu karakterističnu transformaciju proizvoljnog Smitovog stabla S.

Lema 3.8. Neka je *S* proizvoljno Smitovo stablo, a $S_1 - S_4$ njegovi podgrafovi prikazani na Slici 49. Tada su grafovi *G'* maksimalni refleksivni grafovi u klasi R_3 .

Slika 49. Jedna transformacija Smitovog stabla

Dokaz: Primenom Švenkovih lema dobija se da je $P_{S} = (P_{S_{1}}P_{S_{2}} - P_{\overline{S}_{1}}P_{\overline{S}_{2}})(P_{S_{3}}P_{S_{4}} - P_{\overline{S}_{3}}P_{\overline{S}_{4}}) - P_{S_{1}}P_{\overline{S}_{2}}P_{\overline{S}_{3}}P_{S_{4}} = 0$, dok je $P_{G'} = -mnP_{S} = 0$. Ako bi graf *S* nastao proširivanjem Smitovog stabla visećom granom, bilo bi $P_{S} < 0$, tj. $P_{G'} > 0$, tj. $\lambda_{2}(G') > 2$. Ako bi *S* bio podgraf Smitovog stabla, bilo bi $P_{G'} < 0$. Iz prethodnog, uz primenu Teoreme o preplitanju na graf *G'*, sledi da je baš $\lambda_{2}(G') = 2$ i da su *G'* maksimalni refleksivni grafovi u klasi R_{3} . \Box

4. Minimalni zabranjeni grafovi za osobinu $\lambda_2 \!\leq\! 2$

Svi grafovi sa osobinom $\lambda_2 \leq a$ u okviru jedne klase mogu biti opisani ne samo pomoću maksimalnih dozvoljenih, nego i pomoću minimalnih zabranjenih grafova (npr. [24], [51], [10], [35]); međutim, ovaj pristup dosad nije bio korišćen za refleksivne grafove. U ovoj glavi opisaćemo sve minimalne zabranjene grafove za osobinu refleksivnosti (u daljem tekstu: MF grafove), izuzimajući one koji su RS-odlučivi, u klasi stablolikih bicikličkih grafova sa mostom. Ta klasa grafova pokazala se kao veoma interesantna zbog njenih višestrukih veza sa nekim klasama grafova sa više od dve konture, kao i sa određenom klasom unicikličkih grafova.

4.1. Minimalni zabranjeni grafovi u klasi bicikličkih grafova sa mostom

Biciklički grafovi sa mostom sadrže dve konture proizvoljne dužine (npr. C_m i C_n) koje su povezane mostom. Krajeve mosta označićemo sa c_1 i c_2 (Slika 50.a).

Slika 50. Biciklički grafovi sa mostom

Čvorove susedne *c*-čvorovima zvaćemo crni čvorovi, a ostale čvorove kontura (različite od crnih i *c*-čvorova) beli čvorovi. MF grafovi u ovoj klasi sadrže osnovni graf (Slika 50.a) kao podgraf. Sastoje se od dva grafa, npr. X i Y, koji su povezani mostom (Slika 50.b), pri čemu je X pravi nadgraf grafa C_m , a Y pravi nadgraf grafa C_n (ako neki od njih ne bi bio pravi nadgraf, graf bi bio RS-odlučiv).

Pošto posmatramo samo RS-neodlučive grafove, svaka kontura mora biti dodatno opterećena sa bar po jednom visećom granom, a grafovi $X - c_1$ i $Y - c_2$ moraju biti takvi da je svaka njihova komponenta pravi podgraf Smitovog grafa. Takođe je očigledno da ako je u grafu *G* svaka kontura opterećena po tačno jednom dodatnom granom, onda važi da ako je $\lambda_2(G) > 2$, graf *G* je MF graf.

Pošto u razmatranju krećemo od osnovnog grafa (Slika 50.a), koji je refleksivan i koji proširujemo dodavanjem visećih grana, kao instrument kojim određujemo da li je graf refleksivan ili ne, možemo koristiti vrednost karakterističnog polinoma u tački 2: ako je manja ili jednaka nuli, graf je još uvek refleksivan; a ako je pozitivna, nije. Pri tome koristimo Švenkove leme, kao i već poznate vrednosti karakterističnog polinoma u tački 2 za neke često korišćene grafove [31].

Diskusiju ćemo razdvojiti na sledeće slučajeve: opterećen je bar jedan beli čvor (odeljak 4.1.); opterećena su bar dva crna čvora, a beli čvorovi nisu opterećeni (odeljak 4.2.); opterećen je najviše jedan crni čvor i bar jedan *c*-čvor (odeljak 4.3.).

4.1.1. Grafovi kod kojih je bar jedan beli čvor opterećen

Neka je na konturi C_n opterećen jedan beli čvor. Zbog RS-neodlučivosti, na istoj konturi ne može biti opterećen nijedan drugi beli čvor. Pošto je $Y - c_2$ podgraf Smitovog stabla, on mora biti jedan od grafova $P_1 - P_6$ sa Slike 51.

Slika 51. Grafovi $P_1 - P_6$

Grafovi sa Slike 51. su Kokseter-Dinkinovi, ali u ovom delu smo ih grupisali i drukčije označili zbog kraće diskusije.

Neka je i na konturi C_m opterećen samo jedan beli čvor. Dobijeni grafovi su MF u slučajevima kad je $X - c_1$ jednak proizvoljnom grafu $P_1 - P_6$, a $Y - c_2$ jednak grafu P_1 za j = 2,3,4 (čime je dobijena familija MF grafova M1); P_2 za j = 1 (familija M2); P_3 za j = 1 (familija M3); P_4 za j = 1 (familija M4); P_5 za proizvoljno $j \ge 5$ (familija M5) i P_6 za j = 1 i $m \ge 5$ (familija M6). Za j = 1 i m = 4 dobijeni graf je refleksivan, ali se može proširiti na 3 načina, pri čemu se dobijaju MF grafovi (M7-M9) (Slika 52.).

Slika 52. Grafovi M7-M9

Neka je na konturi C_m opterećen samo jedan crni čvor i to visećom granom. Dobijeni grafovi su MF u slučajevima kad je $Y-c_2$ graf P_1 ili P_5 ; P_2 ili P_3 za j=1; P_4 za j=1 i $m \ge 5$ ili P_6 za j=2 (M10-M15). U slučaju P_4 za m=3,4 i j=1, dobijeni graf je refleksivan, ali se može proširiti dodavanjem viseće grane na 8 načina, pri čemu se dobijaju MF grafovi M16-M23 (Slika 53.). U slučaju P_6 , za j=1 dobija se refleksivan graf, koji se može proširiti dodavanjem viseće grane na 6 načina, pri čemu se takođe dobijaju MF grafovi M24-M29 (Slika 53.).

Slika 53. Grafovi M16-M29

Neka je na konturi C_m opterećen samo čvor c_1 .

 Neka je podgraf Y−c₂ grafa G jednak grafu P₁. Tada je P_G(2) = m(3j-6). Za j=3 ovi grafovi su MF (M30), dok su za j=2 refleksivni. S druge strane, za j=2 graf G je moguće proširiti na jedan od 4 načina prikazana na Slici 54. (M31-34) pri čemu karakteristični polinom novog grafa postaje u tački 2 pozitivan, tako da se u svakom od 4 proširenja dobijaju MF grafovi.

Slika 54. Grafovi M31-M34

 Neka je podgraf Y − c₂ grafa G jednak jednom od grafova P₂ − P₄. Za j = 2 dobijaju se MF grafovi (M35-M37). Za j = 1 dobijeni grafovi su refleksivni, pri čemu ih je moguće proširiti na jedan od 5 načina prikazanih na Slici 55.

Slika 55. Proširenja u slučaju da je j = 1

U slučaju da je $Y - c_2$ graf P_2 , svih 5 dobijenih grafova (M38-M42) su MF. U slučaju da je $Y - c_2$ graf P_3 ili graf P_4 , u slučajevima proširenja sa Slike 55. a), d) i e) dobijaju se MF grafovi M43-M48, dok se u slučajevima proširenja sa Slike 55.b) i c) dobijaju refleksivni grafovi.

Neka je $Y - c_2$ graf P_3 . Ako je graf proširen na način prikazan na Slici 55. b), on može dalje da se proširi na 3 načina prikazana na Slici 56.a)-c), pri čemu se dobijaju MF grafovi M49-51, dok se u slučaju prikazanom na Slici 55.c) daljim proširivanjem dobijaju MF grafovi M52 i M53 sa Slike 56.d)-e).

Slika 56. Grafovi M49-M53

Neka je podgraf $Y - c_2$ grafa G jednak grafu P_4 . U slučaju prikazanom na Slici 55.b) daljim proširivanjem dolazi se do MF grafova M54-58, dok se proširivanjem grafa sa Slike 55.c) dobijaju MF grafovi M59-62 (Slika 57.).

Slika 57. Grafovi M54-M62

 Neka je podgraf Y-c₂ grafa G jednak grafu P₅. Dobijeni grafovi su MF za j≥6, dok je za j=5 dobijeni graf moguće dalje proširiti na 4 načina (Slika 58.), pri čemu se u sva 4 slučaja dobijaju MF grafovi M63-66.

Slika 58. Grafovi M63-M66

4) Neka je podgraf Y-c₂ grafa G jednak grafu P₆. Dobijeni grafovi M67 su MF za j=3. U slučaju kad je j=2, dobijeni grafovi su refleksivni i mogu se proširiti na 4 načina, pri čemu se 3 puta dobijaju MF grafovi M68-70 (Slika 59.a)-c), a četvrti put graf koji nije minimalan (Slika 59.d).

Za j=1, dobijeni refleksivni grafovi mogu se proširiti na 4 načina visećom granom, pri čemu se u prva 3 slučaja dobijaju refleksivni grafovi (Slika 60.a)-c)), dok se u četvrtom slučaju dobije MF graf M71 (Slika 60. d)).

Slika 60. Proširenja u slučaju da je j = 1

Proširivanjem grafova sa Slike 60.a)-c) dobija se, kad se eliminišu RS-odlučivi MF grafovi, 10 MF grafova M72-81 (Slika 61.).

Na osnovu prethodnog, važi sledeća teorema.

Teorema 4.1. Ako je *G* biciklički graf s mostom prikazan na Slici 50.b), koji je RSneodlučiv i u kome je opterećen bar jedan beli čvor (npr. konture C_n), *G* je minimalni zabranjeni graf za osobinu refleksivnosti ako i samo ako je on jedan od grafova M1-81.

4.1.2. Grafovi u kojima su opterećena bar dva crna čvora

U ovom odeljku posmatraćemo bicikličke grafove s mostom (Slika 50.b)), kod kojih beli čvorovi nisu opterećeni, ali imaju bar dva crna čvora opterećena.

Prethodno navodimo dve leme koje prikazuju ulogu β -preslikavanja u određivanju ovakvih MF grafova.

Slika 62. Uloga β -preslikavanja

Lema 4.1. Neka su grafovi G_1 i G_2 (Slika 62.a) RS-neodlučivi grafovi iz klase bicikličkih grafova sa mostom. Neka je *B* pravi nadgraf konture C_m , a *A* i \overline{B} pravi podgrafovi Smitovih grafova ili neka je *B* jednak C_m , dok je *A* podgraf Smitovog grafa. Neka je *A* u oba slučaja oslonjen u istom čvoru. Tada je G_1 MF graf ako i samo ako je G_2 MF graf.

Dokaz: Sledi iz Teoreme 2.2.

Lema 4.2. Neka su grafovi G_3 i G_4 (Slika 62.b) RS-neodlučivi grafovi iz klase bicikličkih grafova sa mostom. Neka su \overline{B} , A_1 i A_2 pravi podgrafovi Smitovih grafova, dok je *B* nadgraf konture C_m (ili jednak C_m) i neka su A_1 tj. A_2 u oba slučaja oslonjeni u istom čvoru. Tada je G_3 MF graf ako i samo ako je G_4 MF graf.

Dokaz: Sledi iz Teoreme 2.2.

Sledećom teoremom ćemo opisati sve MF grafove iz ovog odeljka.

Teorema 4.2. Neka je G RS-neodlučiv biciklički graf s mostom (Slika 50.b)), kod koga beli čvorovi nisu opterećeni, ali je na svakoj konturi opterećen bar po jedan crni čvor. Tada je G MF graf ako i samo ako je on jedan od grafova M82-97.

Dokaz: Ako su na oba crna čvora oslonjene samo viseće grane (Slika 63.a), dobijeni graf je refleksivan i za njega važi P(2) = -m - n - 1. Ako se ovaj graf proširi novom visećom granom tako da se optereti i treći crni čvor ili tako da je od 2 opterećena čvora jedan stepena 4, a drugi stepena 3, dobijaju se MF grafovi M82-83 (Slika 63.b) i c), za koje važi P(2) = (m+2)(n-1), tj. P(2) = 4(mn-m-1). Za grafove sa Slike 63.d) i e) važi P(2) = mn - 2n - m - 2, pa su ovakvi grafovi MF grafovi M84-85 za sve (m, n) osim za $(m, n) \in \{(4, 3), (3, 5), (3, 4), (3, 3)\}$.

Slika 63. Grafovi M82-M85

Preostaju još RS grafovi za čije konture C_m i C_n važi $(m,n) \in \{(4,3), (3,5), (3,4), (3,3)\}$. Polazimo od refleksivnih grafova koji se dobijaju u slučajevima d) i e).

Neka je *G* graf dobijen u slučaju d). On se dalje može proširiti tako da oslonjeni put bude dužine 3. Ovakav graf je MF graf M86, ali je zbog β -preslikavanja i graf M87 refleksivan. *G* se može proširiti i tako da se dobije MF graf M88, ali i još 2 β ekvivalentna MF grafa M89 i M90 (Leme 4.1. i 4.2.). U slučajevima kada je $(m,n) \in \{(4,3),(3,5),(3,4),(3,3)\}$ (ali ne i u slučaju kad je (m,n) = (3,5), što sledi iz uvodnih razmatranja) grafovi iz slučaja d) se mogu proširiti i do MF grafova M91, za $(m,n) \in \{(4,3),(3,3)\}$; tj. M92, za $(m,n) \in \{(4,3),(3,4),(3,3)\}$; a grafovi iz slučaja e) do MF grafova M93, za $(m,n) \in \{(4,3),(3,3)\}$ (Slika 64.).

Slika 64. grafovi M86-M93

Dalje analiziramo grafove kod kojih su na jednoj konturi opterećena oba crna čvora, a na drugoj konturi samo *c*-čvor.

Slika 65. Grafovi M94-M97

Pođimo od grafa u kome su opterećena samo dva crna čvora na konturi C_n i čvor c_1 , i to samo visećim granama. On je refleksivan, a u skladu sa ograničenjima u ovom odeljku, može se proširiti na 5 načina, tako da za svaki novodobijeni graf važi $\lambda_2 > 2$. Međutim, ovako dobijamo samo 4 MF grafa M94-97 (Slika 65.a)-d), jer graf sa Slike 65.e) nije minimalan. \Box

4.1.3. Grafovi u kojima je opterećen najviše jedan crni čvor

U ovom odeljku posmatraćemo bicikličke grafove s mostom (Slika 50.b)), kod kojih je, osim eventualno *c*-čvorova, opterećen samo jedan crni čvor. Neka je taj čvor na konturi C_n . Tada mora, zbog RS-neodlučivosti, biti opterećen i čvor c_1 .

Pretpostavimo prvo da osim ova dva čvora nijedan drugi čvor u grafu nije dodatno opterećen i odredimo sve MF grafove ovog tipa. U slučaju da je stepen crnog čvora 3, posmatraćemo samo one grafove kod kojih je crni čvor opterećen samo visećom

granom, kao na Slici 63.a), tj. b), a pomoću β -preslikavanja (tj. Lema 4.1. i 4.2.) odredićemo i sve ostale tražene grafove. Pošto je u ovom slučaju *B* (Slika 62.) u stvari kontura C_m , karakteristični polinom grafa je

$$P_{G_1}(2) = (mP_A(2) - 2mP_{\overline{A}}(2))(-n) - P_{\overline{A}}(2)m(n+1) = m[-nP_A(2) + (n-1)P_{\overline{A}}(2)].$$

Primetimo da je, u slučaju da je A Smitov graf, $P_A(2) = 0$ i $P_{\overline{A}}(2) > 0$, pa je $P_{G_1}(2) > 0$ i, uz Teoremu o preplitanju, $\lambda_2(G_1) > 2$. Međutim, pitanje je da li se na ovaj način dobijaju minimalni grafovi, pa ćemo analizu sprovesti prvenstveno diskusijom po stepenu čvora c_1 , koristeći dobijeni uslov da je A Smitov graf ili pravi podgraf Smitovog grafa.

Teorema 4.3. Neka je *G* RS-neodlučiv biciklički graf s mostom (Slika 50.b)), kod koga su opterećeni samo čvor c_1 i jedan crni čvor na konturi C_n . Tada je *G* MF graf ako i samo ako je on jedan od grafova M99-145.

Slika 66. Grafovi M99-M118

Dokaz: U slučaju kad je crni čvor opterećen samo visećom granom, a čvor c_1 sa r visećih grana važiće $P(2) = 2^{r-1}m(rn-2n-2)$, iz čega sledi da je $\lambda_2 > 2$ već za r = 3, tako da $d(c_1)$ ne prelazi 6.

Neka je $d(c_1) = 6$ i neka su na c_1 oslonjene samo viseće grane. Dobijeni graf M99 je MF graf, koji, po Lemi 3.10., određuje još i grafove M100 i M101 (Slika 66.).

Neka je $d(c_1) = 5$. U slučaju da su na c_1 oslonjena dva puta dužine *i* i j ((*i*, *j*) \neq (1,1), $i \leq j$) na kojima nema čvora stepena većeg ili jednakog 3, na osnovu vrednosti karakterističnog polinoma $P_{G_1}(2) = m[n(ij-1) - (i+1)(j+1)]$ data je tabela u kojoj su za razne vrednosti *n* prikazane minimalne vrednosti za *i* i *j*, kao i indeksi odgovarajućih MF grafova (uključujući i one dobijene naknadnom primenom β -preslikavanja), prikazanih na Slici 66.

Tabela 19. Slučaj $d(c_1) = 5$

i	1				2	
п	3	4	5,6	>6	3	4,5,6
j	6	4	3	2	3	2
М	102	105	108	111	114	117
	103	106	109	112	115	118
	104	107	110	113	116	

Neka su na čvor c_1 oslonjena dva puta, od kojih bar na jednom postoji čvor stepena većeg ili jednakog 3, različit od čvora c_1 . Svaki ovakav graf sadrži graf *H* (Slika 67.) za koji važi P(2) = 4m(n-2), tj. $\lambda_2 > 2$, tako da se dobijaju sledeći MF grafovi: M119, tj. M120 i M121 za k=1 i n=3,4,5,6; M122, tj. M123 i M124 za k=2 i n=3,4; M125, tj. M126 i M127 za k=3 i n=3 i M128, tj. M129 i M130 za k=4 i n=3.

Slika 67. Grafovi M119-M130

Neka je $d(c_1) = 4$. Podgraf *A* možemo posmatrati kao put, u kome su neki čvorovi različiti od c_1 dodatno opterećeni. Mogući su sledeći slučajevi, vodeći računa o tome da *A* ne sme biti nadgraf Smitovog stabla: 1) jedan čvor puta (različiti od c_1) je stepena 3, 2) dva čvora puta (različiti od c_1) su stepena 3 i 3) jedan čvor puta je stepena 4. Razmotrimo redom ove slučajeve.

1) Neka je podgraf A oblika prikazanog na Slici 68.

Slika 68. Grafovi M131-M145

U Tabeli 20. navodimo sve mogućnosti za vrednosti *i*, *j* i *k*, $(i, j, k \ge 1, (i, j) \ne (1, 1), i \le j$) s obzirom na uslov da *A* ne može biti nadgraf Smitovog stabla. Na osnovu prethodnog, iz uslova $-nP_A(2)+(n-1)P_{\overline{A}}(2)>0$ i tražeći minimalne grafove, dobijamo MF grafove M107-116. Za k=5 i k=4 minimalne vrednosti za *i* i *j* su 1 i 2 (grafovi M131 i M132). Za k=3 minimalne vrednosti su i=1, j=3 za n=3 (M133) i i=1, j=2 za $n\ge 4$ (M134). Za k=2 minimalne vrednosti su i=1, j=2 za $n\ge 5$ (M135) i $(i, j) \in \{(1,3), (2,2)\}$ za n=3, 4 (M136-137). Za k=1 minimalne vrednosti su i=1, j=4 za n=3 (M140) i i=j=2 za n=3, 4, 5 (M141).

k	i	j	$P_{A}(2)$	$P_{\overline{A}}(2)$	$-nP_{A}(2) + (n-1)P_{\bar{A}}(2)$
5	1	2	0	1	<i>n</i> -1
4	1	2	1	2	n-2
3	1	3	0	2	2(<i>n</i> -1)
3	1	2	2	3	n-3
2	1	5	0	4	4(n-1)
2	1	4	1	4	3n - 4
2	1	3	2	4	2n - 4
2	2	2	0	3	3(n-1)
2	1	2	3	4	n-4
1	3	3	0	8	8(n-1)
1	2	5	0	9	9(<i>n</i> -1)
1	2	4	1	8	7 <i>n</i> -8
1	2	3	2	7	5 <i>n</i> -7
1	2	2	3	6	3(n-2)
1	1	$j \ge 2$	4	<i>j</i> +3	nj-j-n-3

Tabela 20. Minimalne vrednosti za *i* i *j*

- 2) Ako su 2 čvora stepena 3, dobijaju se MF grafovi M142-143 (Slika 68.).
- Ako je jedan čvor stepena 4, on mora biti susedan čvoru c₁ i tada je diam(A) = 2, što određuje graf M144 (Slika 68.).

Pretpostavimo sada da je stepen crnog čvora veći od 3. Lako se dokazuje da je za graf M145 (Slika 68.) $\lambda_2 > 2$, tako da je i ovo MF graf. \Box

Interesantno je da se do grafova M99-145 moglo doći i primenom β -preslikavanja. Posmatrajmo graf G_2 sa Slike 62.a). Ako primenimo RS-teoremu na čvor c_2 , sledi da za G_2 važi $\lambda_2 > 2$ ako i samo ako je odgovarajući $Y - c_2$ nadgraf Smitovog stabla. Ovakvi grafovi su RS-odlučivi, ali očigledno mogu da generišu odgovarajuće grafove oblika G_1 , koji nisu RS-odlučivi (u slučajevima kad je $A - c_1$ pravi podgraf nekog od Smitovih stabala). Kako svaki nadgraf Smitovog stabla sadrži bar jedan od grafova $F_1 - F_9$ sa Slike 69. koji predstavljaju minimalna zabranjena stabla za osobinu $\lambda_1 \leq 2$, možemo analizirati položaj tih stabala u grafu G_2 , tj. u odgovarajućem grafu G_1 . Na Slici 69 su sa $x(x_1, x_2, ...)$ označeni oni čvorovi, po čijem odstranjivanju stablo postaje jedno od Smitovih.

Slika 69.

Stablo $Y - c_2$ može biti ili jedno od stabala $F_1 - F_9$, ili pravi nadgraf jednog od njih, ali u tom slučaju mora biti minimalno, u smislu da se odstranjivanjem bilo kog njegovog čvora koji nije čvor konture C_n dobija stablo za koje je $\lambda_1 \leq 2$. Ako je, na primer, stablo F_i podgraf stabla $Y - c_2$, onda se stablo A mora sadržati u F_i , ali stablu F_i takođe mora pripadati i odgovarajući crni čvor (onaj koji je u G_2 stepena 3). Sve mogućnosti za stabla $Y - c_2$ prikazana su na Slici 70 ($p \ge 1, n \ge 3$).

U slučaju grafa F_2 može biti p=1 (što bi generisalo grafove M99-101) ili p=2(M144). U slučaju grafa $F_3 a$) važiće $p+n-2 \in \{3,4,5\}$ (M117-118, M141 i M136), dok graf $F_3 b$) generiše M114-116. Za $F_4 a$) važiće $p+n-2 \in \{4,5\}$ (M108-110, M133, M137, M139), a za $F_4 b$) p+n-2=3 (M105-107 i M140). Za $F_5 a$) biće $p+n-2 \ge 6$ (M111-113, M131-135 i M138), a $F_5 b$) generiše M102-104. Za F_6 važi $p+n-2 \in \{2,3,4,5\}$ (M119-121, M142), za $F_7 p+n-2 \in \{2,3\}$ (M122-124 i M143), F_8 određuje M125-127, a F_9 M128-130. Jedini izuzetak koji ne možemo da opišemo na ovaj način je graf M145. Na osnovu toga, može se formulisati sledeća teorema.

Teorema 4.4. Neka je G' biciklički graf s mostom (Slika 50.b)), u kome je $X = C_m$, a $Y - c_2$ stablo sa osobinom $\lambda_1 > 2$, takvo da se po odstranjivanju bilo kog njegovog čvora koji ne pripada konturi C_n dobija stablo sa osobinom $\lambda_1 \le 2$. Neka je G RS-neodlučiv biciklički graf s mostom u kome su dodatno opterećeni samo čvor c_1 i jedan crni čvor na konturi C_n . Tada je G MF graf ako i samo ako je on primenom Lema 3.9. i 3.10. (Slika 62.) dobijen od grafa G' ili ako je on graf M145.

Pretpostavimo sada da su u grafu G dodatno opterećeni samo jedan crni čvor sa konture C_n i oba c-čvora. Primetimo da će sad α -preslikavanje (Slika 71.) imati ulogu u daljem ispitivanju, što je objašnjeno lemama 4.3. i 4.4.

Slika 71. Uloga α-preslikavanja

Lema 4.3. Neka su G_5 i G_6 grafovi predstavljeni na Slici 71.a) gde je N pravi nadgraf konture C_n , a H i \overline{N} podgrafovi nekih Smitovih stabala; ili neka je N kontura C_n , H nadgraf nekog Smitovog stabla, a \overline{H} podgraf nekog Smitovog stabla. Tada je G_5 MF graf ako i samo ako je G_6 MF graf.

Dokaz: Sledi iz Teoreme 2.1.

Lema 4.4. Neka su G_7 i G_8 grafovi predstavljeni na Slici 71.b) gde je N nadgraf konture C_n ili kontura C_n , a \overline{N} , H_1 i H_2 pravi podgrafovi nekih Smitovih stabala i neka su H_1 i H_2 oslonjeni oba puta u istom čvoru. Tada je G_7 MF graf ako i samo ako je G_8 MF graf.

Dokaz: Sledi iz Teoreme 2.1.

Na osnovu prethodnog, slede tvrđenja.

Teorema 4.5. Neka je *G* RS-neodlučiv biciklički graf s mostom (Slika 50.b)), kod koga su opterećeni samo oba *c*-čvora i jedan crni čvor na konturi C_n . Tada je *G* MF graf ako i samo ako je on graf M146 (Slika 72.) ili ako je njemu odgovarajući graf koji je dobijen primenom Lema 4.3. i 4.4. jednak jednom od onih grafova M104-144 kod kojih je $d(c_1) = 4$.

Dokaz: Neka je *G* biciklički graf s mostom (Slika 50.b)), kod koga su opterećeni crni čvor konture C_n i oba *c*-čvora. Maksimalni stepen čvora c_1 je pet, jer ako su crni čvor i čvor c_2 opterećeni sa po jednom visećom granom, a čvor c_1 opterećen sa dve viseće grane, dobija se MF graf M146 (Slika 72.).

Ako je stepen čvora $d(c_1) = 4$, graf je oblika grafa G_6 ili grafa G_8 (Slika 71.) i biće MF graf ako i samo ako je i odgovarajući graf G_5 ili G_7 MF graf.

Slika 72. Grafovi M146, M186 i M187

Dakle, graf G_5 , tj. G_7 , može biti jedan od grafova M104,107,110,113,115,116,118,121,124,127,130-144. Sve navedeni grafovi generišu po jedan graf oblika G_6 , grafovi M121 i M141 generišu još i po jedan graf oblika G_8 , a grafovi M138-140 i M142-144 još i po 2 grafa oblika G_8 . Ukupno se na ovaj način dobija još 39 MF grafova M147-M185. \Box

Na kraju opišimo grafove kod kojih su dodatno opterećeni samo *c*-čvorovi.

Teorema 4.6. Neka je *G* RS-neodlučiv biciklički graf s mostom (Slika 50.b)), kod koga su opterećeni samo *c*-čvorovi. Tada je *G* MF graf ako i samo ako za njega važi tačno jedno od tri sledeća tvrđenja: 1) *G* je jedan od grafova M186-187 (Slika 72) ; 2) *G* je graf oblika G_6 , pri čemu je $N = C_n$, a *H* je jedan od grafova $F_1 - F_9$ kod koga je bilo koji čvor različit od *x*-čvorova identifikovan sa čvorom c_2 , 3) *G* je graf oblika G_8 , pri čemu je $N = C_n$, a grafovi H_1 i H_2 nastali su cepanjem nekog od grafova $F_1 - F_9$ u bilo kom čvoru koji nije *x*-čvor.

Dokaz: Neka su u grafu G (Slika 50.b)) opterećeni samo c-čvorovi. Neka je $d(c_1), d(c_2) \ge 5$. Ako je $d(c_1) = d(c_2) = 5$ i ako su na c-čvorove dodate samo viseće

grane, dobijeni graf je refleksivan. Daljim proširivanjem jednom visećom granom moguće je dobiti dva MF grafa M186 i M187 (Slika 72.).

Neka je npr. $d(c_1) = 4$ i neka je na čvor c_1 oslonjena samo viseća grana, čiji ćemo drugi čvor označiti sa c_3 , a na čvor c_2 stablo H. Tada je posmatrani graf tipa G_6 , pa će biti MF graf ako i samo ako je i odgovarajući graf oblika G_5 MF graf. Međutim, kako je $N = C_n$, za graf oblika G_5 važiće $\lambda_2 > 2$ ako i samo ako je H nadgraf nekog od grafova $F_1 - F_9$. Svaki ovakav graf oblika G_5 biće RS-odlučiv, ali odgovarajući grafovi tipa G_6 neće biti RS-odlučivi ako i samo ako H jeste neki od grafova $F_1 - F_9$, ali nije oslonjen ni u jednom x-čvoru. Naime, ako je oslonjen u nekom x-čvoru, onda će i odgovarajući graf tipa G_6 biti RS-odlučiv. S druge strane, ako je H pravi nadgraf nekog od stabala $F_1 - F_9$, onda će odgovarajući graf tipa G_6 biti ili RS-odlučiv, ili neće biti minimalan. Takođe, u slučajevima kad je graf G_5 takav da H jeste jedan od grafova $F_1 - F_9$ i to oslonjen u čvoru koji nije x-čvor i u tom čvoru može da se pocepa na H_1 i H_2 (oblik G_7), onda je odgovarajući graf oblika G_8 MF graf. \Box

4.2. Minimalni zabranjeni grafovi u klasi R_3

U ovom delu određuju se svi minimalni zabranjeni grafovi iz klase R_3 .

Razmatranje ćemo započeti od grafova u kojima je dodatno opterećen bar po jedan čvor na svakoj spoljašnjoj konturi.

Teorema 4.7. Neka je *G* graf čija je ciklička struktura prikazana na Slici 38. i neka je u njemu dodatno opterećen bar po jedan čvor na svakoj spoljašnjoj konturi (uključujući i čvorove c_1 i c_2). Tada je graf *G* MF graf ako i samo ako važi jedan od sledećih uslova:

- Na svakoj spoljašnjoj konturi opterećen je po jedan čvor, različit od *c*-čvorova.

- Na jednoj konturi opterećen je samo odgovarajući *c*-čvor, a na drugoj samo jedan beli čvor.
- Na jednoj konturi opterećen je samo *c*-čvor (npr. c_2), a na drugoj (C_m) samo jedan crni čvor i *G* je jedan od grafova $G_1 G_{17}$ (Slika 73.).
- Na obe spoljašnje konture opterećeni su jedino *c*-čvorovi i graf *G* je oblika grafa
 G' prikazanog na Slici 70., gde je *T* jedan od grafova *F*₁ − *F*₉ (Slika 69.), a
 *T*₁ − *T*₄ njegovi podgrafovi, kao na Slici 70.
- G je graf G_{18} (Slika 73.).

Dokaz: Na osnovu analize iz početnog dela glave 3.4., tvrdimo da su grafovi u kojima je na svakoj spoljašnjoj konturi opterećen po jedan čvor, različit od *c*-čvorova, MF grafovi. Primetimo da ovi grafovi mogu biti i RS-odlučivi (ako je opterećen beli čvor na spoljašnjoj konturi). Ako je na jednoj konturi opterećen samo *c*-čvor, npr. na C_n opterećen samo čvor c_2 , a na konturi C_m samo beli čvor, takođe se dobijaju MF grafovi, koji ne moraju biti RS-neodlučivi.

Ako je na konturi C_n opterećen samo čvor c_2 , a na konturi C_m jedan crni čvor, dobija se takođe MF graf G_1 , ali samo za $m \ge 7$. Dodavanjem još jedne viseće grane dobijaju se MF grafovi u sledećim slučajevima:

- za m=3,4,5,6, ako je opterećen i drugi crni čvor konture C_m, ako je na opterećeni crni čvor ili na c₂ dodat put dužine 2 (grafovi G₂ i G₃), ako su na opterećeni crni čvor ili na c₂ dodate 2 viseće grane (grafovi G₄ i G₅) i ako je i na c₁ dodata viseća grana (graf G₆);
- za $m \ge 4$, ako je opterećen i čvor c_3 (graf G_9);
- za $m \ge 5$, ako je opterećen i čvor c_4 (graf G_8).

Novim dodavanjem visećih grana u slučaju da su dobijeni refleksivni grafovi dolazimo do MF grafova $G_9 - G_{17}$.

Slika 73. Grafovi $G_1 - G_{18}$

Neka su sada u grafu G opterećeni jedino c-čvorovi spoljašnjih kontura, i to visećim granama. Ako je bar jedan od njih stepena 6, a drugi stepena 5, dobija se MF graf G_{18} . Sve ostale MF grafove ovog oblika možemo opisati kao grafove oblika G' (Slika 74.), gde je T jedan od grafova $F_1 - F_9$, na osnovu dokaza Leme 3.12. \Box

Slika 74. Grafovi oblika G'

Preostalo je da razmotrimo slučajeve kad na jednoj konturi, npr. C_n , nijedan čvor nije dodatno opterećen. U tom slučaju važi sledeća teorema.

Teorema 4.8. Graf G, prikazan na Slici 75., (A je nadgraf konture C_m , a B stablo) je MF graf u klasi R_3 ako i samo ako je njegov podgraf H MF graf u klasi bicikličkih grafova s mostom.

Slika 75. Grafovi G i H

Dokaz: Dokaz sledi iz Teoreme 2.5.. □

Teoremama 4.7. i 4.8. određeni su svi MF grafovi u klasi R_3 .

Analogno poslednjoj teoremi, može se formulisati i sledeća, koja se odnosi na jednu klasu grafova sa 4 konture.

Teorema 4.9. Graf *G*, prikazan na Slici 76., (*A* je nadgraf konture C_p , a *B* stablo) je MF graf u klasi grafova sa 4 konture Q_2^- ako i samo ako je njegov podgraf *H* MF graf u klasi bicikličkih grafova sa mostom.

Slika 76. Grafovi G i H

Dokaz: Dokaz sledi iz Teoreme 2.5.

5. Maksimalan broj kontura u RS-neodlučivim refleksivnim kaktusima koji sadrže snop kontura

Klase multicikličkih grafova koje sadrže snop kontura su očigledno komplikovanije za opisivanje, pa su se dosadašnji radovi (npr. [19], [39], [42]) bavili određivanjem refleksivnih grafova unutar određenih klasa, koje su po pravilu obuhvatale RS-neodlučive grafove koji ne sadrže snop kontura. Izuzetak je rad [40], u kome je opisana jedna klasa refleksivnih kaktusa sa snopom od dve konture, pri čemu je stepen artikulacionog čvora jednak 5. S druge strane, maksimalan broj kontura za RS-neodlučiv refleksivan kaktus koji ne sadrži snop kontura, određen je u [42].

U ovom delu odredićemo maksimalan broj kontura za refleksivne RS-neodlučive kaktuse koji sadrže snop kontura, a time i za sve refleksivne RS-neodlučive kaktuse. Takođe ćemo predstaviti tri klase maksimalnih refleksivnih kaktusa čije konture čine snop.

5.1. Minimalne komponente

Slika 77. Kaktus čije konture čine snop

Neka je G graf (Slika 77.) sa k kontura koje čine snop ($k \ge 2$). Neka su $C_1,...,C_k$ uniciklički podgrafovi grafa G koji sadrže konture dužine $n_1,...,n_k$ respektivno. Neka je čvor v zajednički za sve konture i neka su na njega oslonjena još i stabla $T_1,...,T_m$ ($m \ge 0$). Graf G-v sastoji se od komponenti $K_i = C_i - v$ (i = 1,...,k) i komponenti $L_i = T_i - v$ (i = 1,...,m). Neka za graf G (Slika 77.) važi da su mu sve komponente $K_1,...,K_k,T_1,...,T_m$ podgrafovi (ne neophodno pravi) Smitovih stabala. Tada je G RS-odlučiv i refleksivan. Označimo familiju takvih grafova sa G_{∞} .

Ako graf G (Slika 77.) ne pripada familiji G_{∞} , on može biti refleksivan samo ako je RSneodlučiv. Tada je jedna komponenta grafa G-v pravi nadgraf Smitovog stabla, tj. tipa NS, dok su sve ostale pravi podgrafovi Smitovih stabala, tj. tipa PS. U cilju nalaženja maksimalnog broja kontura dovoljno je posmatrati u određenom smislu minimalne slučajeve.

Reći ćemo da je graf G sa Slike 77. tipa G_1 ako ispunjava sledeće uslove:

- 1.1. sve konture u grafu su slobodne
- 1.2. jedna od njegovih *L*-komponenti (npr. L_1) je tipa NS, i na čvor v nije oslonjeno

nijedno drugo stablo

1.3. za svaki čvor u komponente L_1 koji je u grafu G stepena 1 važi uslov

 $\lambda_1(L_1-u)\leq 2,$

a tipa G_2 ako ispunjava sledeće uslove:

- 2.1. na čvor v nije oslonjeno nijedno stablo
- 2.2. jedna od njegovih K-komponenti (npr. K_1) je tipa NS, dok su sve ostale Kkomponente putevi
- 2.3 za svaki čvor u komponente K_1 koji je u grafu G stepena 1 važi uslov

$$\lambda_1(K_1 - u) \le 2$$

Primetimo da ako je G graf sa Slike 77. koji je refleksivan i RS-neodlučiv, on tada sadrži kao podgraf ili graf tipa G_1 ili graf tipa G_2 . Zato možemo posmatrati samo grafove tipa G_1 tj. G_2 , jer ako za ovakve grafove odredimo maksimalan broj kontura, to će biti maksimalan broj kontura za sve RS-neodlučive refleksivne kaktuse koji sadrže snop kontura.

Teorema 5.1. 1) Neka je graf G (Slika 77.) graf tipa G_1 . Tada je on refleksivan ako i samo ako važi uslov: $P_{T_1} - 2kP_{L_1} \le 0$. 2) Neka je graf G (Slika 77.) graf tipa G_2 . Tada je on refleksivan ako i samo ako važi uslov: $P_{C_1} - 2(k-1)P_{K_1} \le 0$.

Dokaz: U navedenim slučajevima, određivanje maksimalnog broja kontura grafa *G* (koji je tipa G_1 ili G_2) svodi se na ispitivanje znaka karakterističnog polinoma grafa *G* u tački 2. Neka je graf *H* jednak G-x, gde je *x* onaj čvor komponente L_1 (ili K_1) grafa G-v, koji je stepena 1 u grafu *G*. Pošto je indeks grafa L_1-x , tj. K_1-x , manji ili jednak 2, onda je po RS-teoremi $\lambda_2(H) < 2$, a po Teoremi o preplitanju i $\lambda_3(G) < 2$, pa sledi da je tada $P_G \le 0 \Leftrightarrow \lambda_2(G) \le 2$. Odredićemo P_G za oba opisana slučaja, ali ćemo prethodno odrediti P_{B_k} , gde smo sa B_k označili snop od *k* slobodnih kontura, čije su dužine $n_1, ..., n_k$:

$$P_{B_k} = 2n_1n_2...n_k - 2(n_1 - 1)n_2...n_k - 2n_1(n_2 - 1)...n_k - ... - 2n_1n_2...(n_k - 1) - 2(n_2...n_k + n_1n_3...n_k + ... + n_1n_2...n_{k-1}) = 2n_1n_2...n_k(1 - k)$$

1) Neka je G graf tipa G_1 . Primenom Švenkovih lema dobijamo:

$$P_{G} = P_{T_{1}}n_{1}...n_{k} + P_{L_{1}}n_{1}...n_{k}(2-2k) - 2P_{L_{1}}n_{1}...n_{k} = n_{1}...n_{k}(P_{T}-2kP_{L_{1}}),$$

pa uslov $P_G \leq 0$ postaje ekvivalentan sa $P_{T_1} - 2kP_{L_1} \leq 0$.

2) Neka je G graf tipa G_2 . Ponovo primenom Švenkovih lema sledi:

$$P_{G} = P_{C_{1}}n_{2}...n_{k} + P_{K_{1}}2n_{1}...n_{k}(1-(k-1)) - 2P_{K_{1}}n_{2}...n_{k}$$
$$= n_{2}...n_{k}(P_{C_{1}}-2(k-1)P_{K_{1}}),$$

pa smo uslov $P_G \le 0$ ovaj put sveli na $P_{C_1} - 2(k-1)P_{K_1} \le 0$.

Sada ćemo analizirati kako mogu da izgledaju komponente L_1 , odnosno K_1 . Komponenta koja je nadgraf Smitovog stabla mora sadržati bar jedan od grafova $F_1, ..., F_9$ (Slika 69.), koji su minimalna zabranjena stabla za osobinu $\lambda_1 \leq 2$. Čvorove susedne čvoru v zvaćemo crni čvorovi. U slučaju da je G tipa G_1 , crni čvor podgrafa T_1 označićemo sa b, a u slučaju da je G tipa G_2 , crne čvorove podgrafa C_1 označićemo sa b_1 i b_2 .

Neka komponenta L_1 (ako je G tipa G_1), tj. K_1 (ako je G tipa G_2) sadrži npr. graf F ($F \in \{F_1, ..., F_9\}$). Tada bar jedan od čvorova grafa F mora biti crni čvor odgovarajuće komponente. U suprotnom, ako nijedan crni čvor ne pripada grafu F koji je podgraf odgovarajuće komponente, po odstranjivanju crnog čvora b iz grafa G tipa G_1 , tj. crnih čvorova b_1 i b_2 iz grafa G tipa G_2 dobijamo RS-odlučiv graf za koji važi $\lambda_2(G-b) > 2$, tj. $\lambda_2(G-b_1-b_2) > 2$, a time i $\lambda_2(G) > 2$.

A. G je tipa G_1

U ovom slučaju crni čvor komponente L_1 mora pripadati grafu F koji komponenta sadrži, pa je dovoljno razmotriti slučajeve kada je $L_1 = F_i(i = 1, ..., 9)$. Pri tome čvor x ne sme da bude crni čvor, jer bi u suprotnom graf G-b bio RS-odlučiv, ali se b može identifikovati sa bilo kojim drugim čvorom grafa F.

B. G je tipa G_2

Ako oba crna čvora komponente K_1 pripadaju grafu F koji ona sadrži, tada je $K_1 = F$.

Ako samo jedan od crnih čvorova, npr. čvor b_1 , pripada grafu F, onda se K_1 može predstaviti kao F proširen bar jednom visećom granom koja u grafu G pripada konturi C_1 . Čvor x (Slika 69.) mora pripadati konturi C_1 , ali ne sme biti crni čvor, pa će biti bar stepena 2 u komponenti K_1 . Naime, ako bi x bio crni čvor npr. b_1 , graf $G-b_1$ bio bi RS-odlučiv i važilo bi $\lambda_2(G) > 2$, osim u slučaju kada je broj kontura u grafu tačno 2, jer bi tada u određenim slučajevima G mogao biti refleksivan. Međutim, u pogledu određivanja najvećeg broja kontura ovaj slučaj nije od značaja. S druge strane, ako x ne bi bio čvor konture, mogli bismo smatrati da je on u G stepena 1 (ako nije, iz K_1 se može odstraniti podgraf oslonjen na x koji ne pripada nosećem grafu F); ali tada za K_1 ne bi važio uslov 2.3., jer bi $K_1 - x$ i dalje bio nadgraf Smitovog stabla F. Dakle u ovom slučaju možemo reći da za komponentu K_1 važi $K_1 = F \cdot P_i$, gde je $F \in \{F_1, ..., F_9\}$, a P_i put dužine *i* sa čvorovima $x, y_1, ..., y_i$ ($y_i = b_2$) koji povezuje čvor x sa čvorom b_2 i koji pripada konturi, pri čemu je koalescencija formirana u čvoru x.

Da bismo odredili kako u ovom slučaju izgleda komponenta K_1 analiziraćemo redom grafove $F_1,...,F_9$ i posmatrati položaj čvora x u njoj i dužinu *i* puta P_i .

Grafovi F_1 i F_9 ne mogu se na ovaj način proširiti putem, jer je za njih nemoguće da svi x-čvorovi budu na konturi. Dalje, bilo koji čvor grafa $F_2,...,F_7$, osim čvorova x, može biti crni čvor b_1 , ali dužina puta P_i u komponenti K_i nije proizvoljna, osim u slučaju grafa F_2 i F_5 .

Da bismo odredili kako u ovom slučaju izgleda K_1 analiziraćemo redom grafove $F_1, ..., F_9$ i posmatrati položaj čvora x (Slika 69.) u njoj i dužinu *i* puta P_i .

Grafovi F_1 i F_9 ne mogu se na ovaj način proširiti putem, jer je kod njih nemoguće da svi x-čvorovi budu na konturi. Dalje, bilo koji čvor grafa $F_2,...,F_7$ osim čvora x može biti crni čvor b_1 , ali dužina puta P_i u komponenti K_1 nije proizvoljna, osim u slučaju grafa F_2 i F_5 . U slučaju grafa F_3 važi $i \in \{1,2\}$, jer bi u suprotnom i posle otklanjanja jednog od čvorova s_5 i s_7 (onog koji je stepena 1) nova komponenta K_1 bila nadgraf grafa F_5 , pa ne bi važio uslov 2.3. U slučaju grafa F_4 važi i = 1. U suprotnom bi, ako je s_7 crni čvor, važilo $\lambda_1(K_1 - b_1 - b_2) \ge 2$, a ako nije, onda bi $K_1 - s_7$ bila nadgraf grafa F_5 , pa ne bi važio uslov 2.3. Za graf F_6 važi $i \in \{1,2,3\}$, jer bi u suprotnom $K_1 - s_4$ ili $K_1 - s_6$ bila nadgraf grafa F_5 , pa ne bi važio uslov 2.3. Za graf F_7 važi i = 1, jer bi u suprotnom $K_1 - s_5$ ili $K_1 - s_7$ bila nadgraf grafa F_5 , pa ne bi važio uslov 2.3. Za graf F_8 nemoguće je da samo jedan čvor grafa bude crni čvor, jer bi $K_1 - s_6$ ili $K_1 - s_8$ bila nadgraf grafa F_4 , pa ne bi važio uslov 2.3.

5.2. Maksimalni broj kontura

U pojedinačnim slučajevima ćemo na osnovu uslova 1) i 2) iz Teoreme 5.1. odrediti maksimalni broj kontura u snopu. Rezultate predstavljamo u tabelama, i to u Tabeli 21. za slučaj $L_1 = F_i$, i = 1,...,9 i u Tabeli 22. za slučaj $K_1 = F_i$, i = 1,...,9. Ispostavlja se da slučaj $K_1 = F \cdot P_i$ neće biti od značaja za traženje maksimalnog broja kontura, jer se u ovim slučajevima posle odstranjivanja čvora b_2 iz grafa tipa G_1 dobija graf tipa G_2 , pa bi maksimalni broj kontura bio ograničen već dobijenim rezultatom iz Tabele 21.

U Tabeli 21. prikazane su maksimalne vrednosti za k, a takođe i koji čvorovi grafa F_i se identifikuju sa b u slučaju u kome se dostiže maksimalna vrednost.

Tabela 21. Vrednosti $k_{\rm ma}$	_x (slučaj komponente L_1)
-----------------------------------	---

L_1	F_1	F_2	F_3	F_4	F_5	F_6	F_7	F_8	F_9
b	S	S_2	<i>S</i> ₃	S_4	S_6	S_2	S_2	S_2	S_2
k _{max}	2	4	7	11	22	4	4	4	4

U Tabeli 22. prikazane su takođe maksimalne vrednosti za k i koji parovi čvorova grafa F_i se identifikuju sa (b_1, b_2) u slučaju u kome se dostiže maksimalna vrednost.

Tabela 22. Vrednosti k_{max} (slučaj komponente K_1)

<i>K</i> ₁	F_1	F_2	F_3	F_4	F_5	F_6	F_7	F_8	F_9
(b_1, b_2)	(x,s)	(s_1, s_2)	(s_2, s_3)	(s_3, s_4)	(s_5, s_6)	(s_2, s_3)	(s_2, s_3)	(s_2, s_3)	(s_2, s_3)
k _{max}	4	10	20	34	74	13*	13*	13*	13*

Opširnije tabele date su u Prilogu III: Tabela 1. sa datim vrednostima za P_{T_1} , P_{L_1} , $P_{T_1} - 2kP_{L_1}$, kao i k_{max} za sve slučajeve identifikovanja čvora *b* sa svim čvorovima grafa F_i (i = 1, ..., 9), kao i Tabela 2. sa datim vrednostima za P_{C_1} , P_{K_1} , $P_{C_1} - 2(k-1)P_{K_1}$, kao i k_{max} , za sva identifikovanja čvorova b_1 i b_2 sa svim parovima čvorova grafa F_i (

i = 1,...,9). U tabelama su sa zvezdicom označeni slučajevi gde je u uslovu stroga nejednakost, tj. za neoznačene slučajeve važi da je za dato k_{max} dostignuta jednakost, što će biti od značaja kasnije. U Tabeli 21. prikazane su maksimalne vrednosti za k, a takođe i koji čvorovi grafa F_i se identifikuju sa b u slučaju u kome se dostiže maksimalna vrednost.

Rezultate dobijene iz Tabela 21. i 22. formuliše sledeća teorema.

Teorema 5.2. 1) Maksimalni broj kontura u grafu koji je tipa G_1 je 22. 2) Maksimalni broj kontura u grafu koji je tipa G_2 je 74.

Na osnovu prethodne teoreme, kao i Leme 5.1. iskazujemo objedinjen rezultat.

Teorema 5.3. Maksimalni broj kontura u RS-neodlučivom refleksivnom kaktusu koji sadrži snop kontura je 74.

Što se tiče maksimalnog broja kontura u RS-neodlučivom refleksivnom kaktusu koji ne sadrži snop kontura, na osnovu Teoreme 1.5. on iznosi 5. Prema tome, možemo formulisati i sledeće opštije tvrđenje.

Teorema 5.4. Maksimalni broj kontura u RS-neodlučivom refleksivnom kaktusu iznosi 74.

Dokaz: Sledi iz Teoreme 1.5. i Teoreme 5.3.□

Napomenimo i da broj kontura u RS-odlučivom refleksivnom kaktusu nije ograničen.

5.3. Tri klase maksimalnih refleksivnih kaktusa koji sadrže snop kontura

U slučajevima prikazanim u Tabelama 1. i 2. u Prilogu III kojima je za dato $k = k_{max}$ u uslovu $P_{T_1} - 2kP_{L_1} \le 0$, tj. $P_{C_1} - 2(k-1)P_{K_1} \le 0$, dostignuta jednakost, dobijaju se maksimalni refleksivni kaktusi. Ovo tvrđenje dokazaćemo u Teoremi 5.5. za slučajeve

kad je graf tipa G_1 i u Teoremi 5.6. za slučajeve kad je graf tipa G_2 i time odrediti dve klase maksimalnih refleksivnih kaktusa koji sadrže snop kontura.

Teorema 5.5. Neka je graf G (Slika 77). tipa G_1 takav da je L_1 jednak nekom od grafova F_i , (i = 1, ..., 9) i da je k jednako odgovarajućem k_{max} za koje je $P_{T_1} - 2kP_{L_1} = 0$ (Tabela 1. Prilog III). Tada je G maksimalni refleksivni graf.

Dokaz: Pošto je iz uslova teoreme očigledno da je graf *G* refleksivan (Teorema 5.1.), potrebno je još dokazati da je maksimalan, tj. da ne može da se proširi visećom granom ni u jednom čvoru. Pretpostavimo suprotno, tj. da je graf *G* proširen visećom granom do grafa *H* i da je *H* takođe refleksivan. Vrednost P_H dobijamo koristeći Švenkove leme i posledice.

Neka je *H* dobijen dodavanjem viseće grane na artikulacioni čvor *v*. Tada važi: $P_H = -n_1...n_k P_{\overline{T}_1}$, a kako je $L_1 = F_i$, biće $P_{L_1} < 0$, tj. $P_H > 0$, pa *H* nije refleksivan.

Neka je viseća grana dodata na crni čvor neke konture, npr. konture C_1 . Primenom posledica Švenkovih lema na novu viseću granu, kao i na most koji spaja artikulacioni čvor v sa neopterećenim crnim čvorom konture C_1 i koristeći uslov $P_{T_1} - 2kP_{L_1} = 0$ dobijamo:

$$P_{H} = -[(n_{1}-1)n_{2}...n_{k}(P_{T_{1}}-2(k-1)P_{L_{1}}) - (n_{1}-2)n_{2}...n_{k}P_{L_{1}}] = -n_{1}n_{2}...n_{k}P_{L_{1}} > 0,$$

što je kontradikcija.

Ako je viseća grana dodata na beli čvor neke konture, npr. na čvor *d* konture C_1 , tako da se podgraf $C_1 - d$ sastoji od dva puta dužine *i* i *j* koja su oslonjena na čvor *v*, važiće:

$$\begin{split} P_{H} &= -[n_{2}...n_{k}(P_{T_{1}}-2(k-1)P_{L_{1}})(i+1)(j+1) + n_{2}...n_{k}(i+j+2)P_{L_{1}}-2n_{2}...n_{k}(i+1)(j+1)P_{L_{1}}] \\ &= -n_{2}...n_{k}(i+j+2)P_{L_{1}} > 0 \end{split}$$

što je ponovo kontradikcija.

Ako je viseća grana dodata na neki od čvorova stabla L_1 , dobijeno je novo stablo L'_1 , tj. T'_1 i sada je refleksivnost grafa H ekvivalentna sa uslovom $P_{T_1'} - 2kP_{L_1'} \le 0$. Ako je u pitanju baš čvor b, koristeći veze $P_{T_1'} = 2P_{T_1} - 2P_{L_1-b}$, $P_{L_1'} = 2P_{L_1} - P_{L_1-b}$, kao i $P_{T_1} - 2kP_{L_1} = 0$, dobijamo $P_{T_1'} - 2kP_{\overline{T_1'}} = P_{L_1-b}(2k-2) > 0$, jer je $L_1 - b$ stablo tipa PS. Ako je u pitanju neki drugi čvor stabla L_1 , npr. u, dobijamo $P_{T_1'} - 2kP_{L_1'} = (2k-2)P_{L_1-u} + P_{L_1-u-b} > 0$, zbog $\lambda_1(L_1-u) \le 2$ i $\lambda_1(L_1-u-b) < 2$ (L_1 je jednak F_i), dakle, u oba slučaja kontradikcija. \Box

Teorema 5.6. Neka je graf G (Slika 77). tipa G_2 takav da je K_1 jednak nekom od grafova F_i , (i = 1, ..., 9) i da je k jednako odgovarajućem k_{max} za koje je $P_{C_1} - 2(k-1)P_{\overline{C_1}} = 0$ (Prilog III - Tabela 2.). Tada je G maksimalni refleksivni graf.

Dokaz: Analogno prethodnom dokazu vidimo da je *G* refleksivan i dokazujemo da je maksimalan svođenjem na kontradikciju. Neka je *G* proširen visećom granom do grafa *H* i neka je *H* takođe refleksivan. Vrednost P_H dobijamo koristeći Švenkove leme i posledice.

Ako je viseća grana dodata na artikulacioni čvor v, važi: $P_H = -n_2...n_k P_{\bar{C}_1}$, a kako je $\bar{C}_1 = F_i$, važi $P_H > 0$, pa *H* nije refleksivan.

Ako je viseća grana dodata na npr. crni čvor konture C_2 , važiće: $P_H = -[(n_2 - 1)n_3...n_k(P_{C_1} - 2(k-2)P_{K_1}) - (n_1 - 2)n_2...n_kP_{K_1}] = -n_2...n_kP_{L_1} > 0$, tj. *H* nije refleksivan.

Takođe, ako je viseća grana dodata na beli čvor neke konture, npr. na čvor d konture C_2 , tako da se podgraf $C_2 - d$ sastoji od dva puta dužine *i* i *j* koja su oslonjena na čvor v, važiće:

$$\begin{split} P_{H} &= -[n_{3}...n_{k}(P_{C_{1}}-2(k-2)P_{K_{1}})(i+1)(j+1) + n_{3}...n_{k}(i+j+2)P_{K_{1}}-2n_{3}...n_{k}(i+1)(j+1)P_{K_{1}}] \\ &= -n_{3}...n_{k}(i+j+2)P_{K_{1}} > 0 \end{split}$$

što je ponovo kontradikcija.

Ako je viseća grana dodata na neki od čvorova stabla K_1 , dobijeno je novo stablo K'_1 , tj. graf C'_1 i sada je refleksivnost grafa H ekvivalentna sa uslovom $P_{C_1} - 2(k-1)P_{K_1} \le 0$. Ako je u pitanju baš crni čvor, npr. b_1 , koristeći veze $P_{C_1} = 2P_{C_1} - (2P_{K_1-b_1} - P_{K_1-b_1-b_2})$, $P_{K_1'} = 2P_{K_1} - P_{K_1-b_1}$, kao i $P_{C_1} - 2(k-1)P_{K_1} = 0$, dobijamo $P_{C_1'} - 2(k-1)P_{K_1'} = 2(k-2)P_{K_1-b_1} + P_{K_1-b_1-b_2} > 0$, jer su $K_1 - b_1$ i $K_1 - b_1 - b_2$ stabla tipa PS. Ako je u pitanju neki čvor stabla K_1 koji nije crni, npr. u, dobijamo $P_{C_1'} - 2(k-1)P_{K_1'} = 2(k-2)P_{K_1-u} + P_{K_1-u-b_1} + P_{K_1-u-b_2} + 2P_{C_1-C_{m_1}} > 0$, zbog $\lambda_1(K_1-u) \le 2$ i $\lambda_1(K_1 - u - b_1)$, $\lambda_1(K_1 - u - b_2)$, $\lambda_1(C_1 - C_{m_1}) \le 2$ (K_1 je jednak F_i), što znači da je u oba slučaja u pitanju kontradikcija sa pretpostavkom.

U slučaju da jednakost u uslovima $P_{T_1} - 2kP_{L_1} \le 0$ i $P_{C_1} - 2(k-1)P_{K_1} \le 0$ nije dostignuta, grafovi tipa G_1 , odnosno G_2 ne moraju biti maksimalni refleksivni. Naime, njihovom snopu kontura se ne može dodati nova, ali im se možda može dodati viseća grana, a da ipak ostanu refleksivni. Npr. u slučaju grafa tipa G_1 , ako je $L_1 = F_3$, pri čemu je čvor s_4 identifikovan sa b i $k_{max} = 3$, ili u slučaju grafa tipa G_2 , ako je $K_1 = F_2$, pri čemu su čvorovi (x, s_3) identifikovani sa čvorovima (b_1, b_2) , pri dodavanju viseće grane na čvor v dobijaju se takođe refleksivni grafovi. \Box

Razmotrimo sada i jednu klasu grafova tipa kaktusa prikazanog na Slici 77. i nametnimo sledeće ograničenje: neka je stepen artikulacionog čvora v jednak 5 [40]. Tada će se u snopu nalaziti tačno dve konture, a na artikulacioni čvor v biće oslonjeno jedno stablo. Označimo ovakav graf sa G (Slika 78.), a sa d čvor stabla koji je susedan artikulacionom čvoru, a ne pripada konturama; primetimo da put vd predstavlja most koji povezuje snop od dve konture sa stablom T. U cilju određivanja svih refleksivnih grafova ovog tipa, pomoću Švenkovih lema nalazimo da je vrednost karakterističnog polinoma u tački 2 jednaka $P_G = -n_1n_2(2P_T + P_{\bar{T}})$ i na osnovu toga određujemo sve tipove stabala koja ispunjavaju uslov $2P_T + P_{\bar{T}} \ge 0$, s tim da sve komponente grafa \bar{T} moraju biti pravi podgrafovi Smitovih stabala. Sva dobijena maksimalna stabla sa navedenim karakteristikama predstavljena su na Slici 78.

Pre svega, stablo *T* može biti Smitovo, prošireno visećom granom u čvoru *d* (T_1), zatim oblika stabla T_2 , gde je $l \ge 0$ proizvoljno, a S_1 bilo koje Smitovo stablo kome je odstranjena viseća grana tako da bi ga viseća grana *dv* dopunila do Smitovog stabla. U stablu T_3 je takođe $l \ge 0$ proizvoljno, dok su vrednosti parametara za stablo T_7 , T_8 i T_{11} date u Tabeli 23.

Na osnovu prethodnih analiza iskazujemo sledeću Teoremu.

Teorema 5.7. [40] RS-neodlučivi biciklički graf sa dve slobodne konture koje imaju jedan zajednički čvor, koji je stepena 5, refleksivan je ako i samo ako je on podgraf grafa *G*, u kome je *T* jedno od stabala $T_1 - T_{12}$ prikazanih na Slici 78. (uz parametre iz Tabele 23.)

Slika 78. Stabla $T_1 - T_{12}$

	T_7		1	8	T_{11}		
i	j	k	i	j	i	j	
3	4	19	17	6	2	14	
3	5	11	9	7	3	5	
3	6	8	6	8	4	4	
3	7	7	5	9			
4	4	9	4	10			
4	5	6	3	13			
5	5	5	2	24			

Tabela 23. Parametri stabla T_7 , T_8 i T_{11}

6. Neka uopštenja

U ovoj glavi uopštićemo neka od prethodnih tvrđenja, za koja ćemo dokazati da važe ne samo u slučaju refleksivnih kaktusa, nego za mnogo šire klase grafova. Pre svega dokazaćemo uopštenu RS-teoremu, a zatim ćemo uopštiti tvrđenja koja se tiču preslikavanja iz druge glave. Na kraju ćemo izvesti zaključke o određenim klasama grafova sa osobinom da im je druga sopstvena vrednost ograničena sa r, gde je r > 0.

6.1. Uopštena RS teorema

RS-teorema se odnosi samo na refleksivne grafove i na osnovu nje je u velikom broju slučajeva moguće utvrditi da li je druga sopstvena vrednost za određene klase grafova (povezani grafovi sa artikulacionim čvorom) veća, jednaka ili manja od 2. Na osnovu uopštene RS teoreme, za iste klase grafova moguće je uporediti drugu sopstvenu vrednost sa proizvoljnim r, r > 0.

U dokazu uopštene RS teoreme koristićemo sledeće pomoćne stavove.

Stav 6.1. Neka je G graf sa Slike 79., gde je G_1 povezan graf sa indeksom r, r > 0, a u dodatni čvor povezan sa nekim od temena $v_1, v_2, ..., v_m$ grafa G_1 . Tada je $P_G(r) < 0$, tj. $\lambda_2(G) < r < \lambda_1(G)$.

Slika 79.

Dokaz: Po Teoremi o preplitanju $\lambda_1(G) > r$, a $\lambda_2(G) \le r$. Primenom Švenkove leme odredićemo karakteristični polinom grafa *G*:

$$P_G(\lambda) = \lambda P_{G_1}(\lambda) - \sum_{i=1}^m P_{G_1 - \nu_i}(\lambda) - 2\sum_{C \in C(u)} P_{G-C}(\lambda).$$

Pošto je $\lambda_1(G_1 - v_i) < r$ (i = 1,...,m), biće i $P_{G_1 - v_i}(r) > 0$ (i = 1,...,m), a pošto je graf G - C $(C \in C(u))$ podgraf grafa $G_1 - v_i$ za neko i = 1,...,m, biće i $P_{G-C}(r) > 0$. Dakle, zbog $P_{G_1}(r) = 0$, sledi $P_G(r) < 0$, pa je $\lambda_2(G) < r .\Box$

Stav 6.2. Neka je *G* graf sa *n* čvorova čije su sopstvene vrednosti $\lambda_1(G) \ge \lambda_2(G) \ge \lambda_3(G) \ge ... \ge \lambda_{n-1}(G) \ge \lambda_n(G)$. Neka je $\lambda_{m+1}(G_1) = \lambda_{m+2}(G_1) = ... = \lambda_{m+k}(G_1) = r$ sopstvena vrednost reda *k*. Ako je polinom $Q_G(\lambda)$ određen relacijom $P_G(\lambda) = (\lambda - r)^k Q_G(\lambda)$, tada je sgn $(Q_G(\lambda)) = (-1)^m$.

Dokaz: Neka je karakteristični polinom grafa G faktorisan na sledeći način:

$$P_G(\lambda) = \prod_{i=1}^m (\lambda - \lambda_i) \cdot (\lambda - r)^k \cdot \prod_{i=m+k+1}^n (\lambda - \lambda_i).$$
 Tada je

$$Q_G(\lambda) = \prod_{i=1}^m (\lambda - \lambda_i) \cdot \prod_{i=m+k+1}^n (\lambda - \lambda_i). \quad \text{Za} \quad i \in \{1, 2, ..., m\} \quad \text{važi} \quad r - \lambda_i < 0, \text{ pa je}$$

$$\operatorname{sgn}\left(\prod_{i=1}^{m} (\lambda - \lambda_{i})\right) = (-1)^{m}. \quad \operatorname{Za} \quad i \in \{m+k+1, m+k+2, \dots, n\} \quad \operatorname{važi} \quad r - \lambda_{i} > 0, \text{ pa je}$$
$$\operatorname{sgn}\left(\prod_{i=m+k+1}^{n} (\lambda - \lambda_{i})\right) = 1. \text{ Dakle, } \operatorname{sgn}\left(Q_{G}(r)\right) = (-1)^{m}. \Box$$

Specijalno, ako je u povezanom grafu G: 1) $\lambda_2 = r$, onda je $Q_G(r) < 0$; 2) $\lambda_3 = r$ i $\lambda_2 > \lambda_3$, onda je $Q_G(r) > 0$.

Sledeću teoremu - uopštenje RS-teoreme - u nastavku teksta označavaćemo sa GRSteorema.

Slika 80. Graf sa artikulacionim čvorom

Teorema 6.1. (GRS-teorema) Neka je G graf sa Slike 80., sa artikulacionim čvorom u. Neka su grafovi $G_1, ..., G_n$, koji su komponente grafa G-u, povezani grafovi za koje važi $\lambda_2(G_i) \le r$, i = 1, ..., n. Tada za r > 0 važi:

- ako je indeks najviše jednog od grafova G₁,...,G_n jednak r, a indeksi ostalih manji od r, onda je λ₂(G) < r;
- ako su indeksi bar dva od grafova G₁,...,G_n jednaki r, a indeksi ostalih nisu veći od r, onda je λ₂(G) = r;
- ako je indeks tačno jednog od grafova G₁,...,G_n veći od r i indeks bar jednog od preostalih grafova jednak r, onda je λ₂(G) > r;
- 4) ako su indeksi bar dva od grafova $G_1, ..., G_n$ veći od r, onda je $\lambda_2(G) > r$.

Dokaz:

1) Neka je $\lambda_1(G_1), \lambda_1(G_2), ..., \lambda_1(G_n) < r$, onda je $\lambda_1 \left(\bigcup$, pa je po Teoremi o preplitanju i $\lambda_2(G) < r$. Sada ćemo razmotriti slučaj kad tačno jedan od grafova $G_1, ..., G_n$ ima indeks r, npr. $\lambda_1(G_1) = r$, dok je $\lambda_1(G_2), \lambda_1(G_3), ..., \lambda_1(G_n) < r$. Iz $\lambda_1(G_1) = r$ sledi $\lambda_2(G_1) < r$, tako da je $\lambda_1 \left(\bigcup$ i $\lambda_2 \left(\bigcup$. Odatle je po Teoremi o preplitanju $\lambda_2(G) \le r$. Zbog $\lambda_1(G_1) = r$ važi $P_{G_1}(r) = 0$, a zbog

 $\lambda_1(G_2), \lambda_1(G_3), ..., \lambda_1(G_n) < r$ važi $P_{G_2}(r), P_{G_3}(r), ..., P_{G_n}(r) > 0$. Primenom Švenkove leme na čvor *u* grafa *G* dobijamo vrednost karakterističnog polinoma grafa *G* u tački *r*:

$$\begin{split} P_{G}(r) &= rP_{G_{1}}(r) \cdot \ldots \cdot P_{G_{n}}(r) - \\ &- \left(\sum_{\nu \in Adju \cap G_{1}} P_{G_{1}-\nu}(r) + 2\sum_{C \in C(u) \cap G_{1}} P_{G_{1}-V(C)}(r)\right) P_{G_{2}}(r) \cdot \ldots \cdot P_{G_{n}}(r) - \\ &- P_{G_{1}}(r) \left(\sum_{\nu \in Adju \cap (G-G_{1})} P_{G-G_{1}-u-\nu}(r) + 2\sum_{C \in C(u) \cap (G-G_{1})} P_{G-G_{1}-V(C)}(r)\right) = \\ &= - \left(\sum_{\nu \in Adju \cap G_{1}} P_{G_{1}-\nu}(r) + 2\sum_{C \in C(u) \cap G_{1}} P_{G_{1}-V(C)}(r)\right) P_{G_{2}}(r) \cdot \ldots \cdot P_{G_{n}}(r). \end{split}$$

Uvedimo graf $K = G - (G_2 \cup ... \cup G_n)$. Tada važi:

$$\begin{split} P_{K}(r) &= r P_{G_{1}}(r) - \sum_{\nu \in Adju \cap G_{1}} P_{G_{1}-\nu}(r) - 2 \sum_{C \in C(u) \cap G_{1}} P_{G_{1}-V(C)}(r) = \\ &= -\sum_{\nu \in Adju \cap G_{1}} P_{G_{1}-\nu}(r) - 2 \sum_{C \in C(u) \cap G_{1}} P_{G_{1}-V(C)}(r). \end{split}$$

Po Stavu 6.1. $P_K(r) < 0$, pa je i $P_G(r) = P_K(r) \cdot P_{G_2}(r) \cdot \dots \cdot P_{G_n}(r) < 0$, što povlači $\lambda_2(G) < r$.

- 2) Ovo je očigledna posledica Teoreme o preplitanju.
- 3) Neka je indeks jednog od grafova G₁, G₂,...,G_n veći od r, npr. λ₁(G₁) > r, a indeks bar jednog od preostalih jednak r, npr. λ₁(G₂) = r, dok su indeksi svih preostalih grafova manji ili jednaki r. Tada po Teoremi o preplitanju važi λ₂(G) ≥ r. Da bismo dokazali strogu nejednakost λ₂(G) > r koristićemo činjenicu da je nju dovoljno dokazati u slučaju kad se graf G-u sastoji samo od dve navedene komponente G₁ i G₂.

Uvedimo grafove $H = G - G_1$ i $K = G - G_2$. Primenom Švenkove leme na čvor *u* grafova *H*, *K* i *G* sledi:

$$P_{H}(\lambda) = \lambda P_{G_{2}}(\lambda) - \sum_{\nu \in Adju \cap G_{2}} P_{G_{2}-\nu}(\lambda) - 2\sum_{C \in C(u) \cap H} P_{H-C}(\lambda)$$
$$P_{K}(\lambda) = \lambda P_{G_{1}}(\lambda) - \sum_{\nu \in Adju \cap G_{1}} P_{G_{1}-\nu}(\lambda) - 2\sum_{C \in C(u) \cap K} P_{K-C}(\lambda)$$

$$P_{G}(\lambda) = \lambda P_{G_{1}}(\lambda) P_{G_{2}}(\lambda) - \left(\sum_{\nu \in Adju \cap G_{1}} P_{G_{1}-\nu}(\lambda) + 2\sum_{C \in C(u) \cap K} P_{K-C}(\lambda)\right) \cdot P_{G_{2}}(\lambda) - \left(\sum_{\nu \in Adju \cap G_{2}} P_{G_{2}-\nu}(\lambda) + 2\sum_{C \in C(u) \cap H} P_{H-C}(\lambda)\right) \cdot P_{G_{1}}(\lambda).$$

Iz gornjih relacija sledi:

$$P_{G}(\lambda) = P_{K}(\lambda)P_{G_{2}}(\lambda) + P_{G_{1}}(\lambda)P_{H}(\lambda) - \lambda P_{G_{1}}(\lambda)P_{G_{2}}(\lambda),$$

tj. pošto je $P_{G_2}(r) = 0$, konačno sledi: $P_G(r) = P_{G_1}(r)P_H(r)$.

Prema Stavu 6.1., zbog $\lambda_1(G_2) = r$, sledi $P_H(r) < 0$. Druga sopstvena vrednost $\lambda_2(G_1)$ može da bude manja ili jednaka r, što ćemo razmotriti kao posebne slučajeve.

- I. Neka je $\lambda_2(G_1) < r$. Tada je $P_{G_1}(r) < 0$, pa je $P_G(r) > 0$, tj. $\lambda_2(G) > r$.
- II. Neka je $\lambda_2(G_1) = r$. Tada je $P_{G_1}(r) = 0 = P_G(r)$. Takođe, po Teoremi o preplitanju, važi $\lambda_2(K) \ge r$.

Ako je $\lambda_2(K) > r$, biće i $\lambda_2(G) > r$. Neka je $\lambda_2(K) = r$. Neka je rsopstvena vrednost grafa G_1 reda k-1 tako da je $\lambda_2(G_1) = \lambda_3(G_1) = ... = \lambda_k(G_1) = r$, a $\lambda_{k+1}(G_1) < r$, gde je $k \ge 2$. Po Teoremi o preplitanju, tada je i $\lambda_3(K) = ... = \lambda_k(K) = r$. Uvedimo polinome $Q_K(\lambda)$, $Q_{G_1}(\lambda)$, $Q_{G_2}(\lambda)$ i $Q_G(\lambda)$ sa $P_K(\lambda) = (\lambda - r)^{k-1}Q_K(\lambda)$, $P_{G_1}(\lambda) = (\lambda - r)^{k-1}Q_{G_1}(\lambda)$, $P_{G_2}(\lambda) = (\lambda - r)Q_{G_2}(\lambda)$ i

$$P_G(\lambda) = (\lambda - r)^{k-1} Q_G(\lambda)$$
. Sledi:

$$P_{G}(\lambda) = (\lambda - r)^{k-1} \cdot Q_{K}(\lambda) \cdot (\lambda - r) \cdot Q_{G_{2}}(\lambda) + (\lambda - r)^{k-1} \cdot Q_{G_{1}}(\lambda) \cdot P_{H}(\lambda) - \lambda(\lambda - r)^{k-1} \cdot Q_{G_{1}}(\lambda) \cdot (\lambda - r) \cdot Q_{G_{2}}(\lambda)$$

pa važi $Q_G(r) = Q_{G_1}(r) \cdot P_H(r)$. Po Stavu 6.2., $Q_{G_1}(r) < 0$, a kako je i $P_H(r) < 0$, sledi $Q_G(r) > 0$, pa je i $\lambda_2(G) > r$.

4) Ovo je takođe direktna posledica Teoreme o preplitanju.

U odnosu na Teoremu o preplitanju, *GRS*-teorema daje poboljšanja u slučajevima 1) i 3).

6.2. Neka preslikavanja i njihova veza sa znakom izraza $\lambda_2 - r$

Uopštena RS-teorema daje povoda da se, slično kao u slučaju uloge Smitovih grafova prilikom određivanja refleksivnih grafova, kod određivanja grafova sa osobinom $\lambda_2 \leq r$ ispita uloga podgrafova čiji je indeks jednak r (ako takvi postoje). Neka je r fiksiran pozitivan realan broj takav da postoji bar jedan graf sa indeksom r. Takve grafove ćemo, u daljem tekstu označavati kao X^r grafove (ili samo kao X grafove, ako je iz konteksta jasno koje r je u pitanju). U ovom delu ispitaćemo moguća uopštenja preslikavanja koja smo definisali u Glavi 2.

Pre svega, neka se sada oznake $\mathcal{V}_{\mathbf{x}}$ i $\mathcal{U}_{\mathbf{x}}$ odnose na familije povezanih grafova sa bar dva mosta (Slika 15.a) i 16.a)) u kojima se na mestu Smitovog grafa *S* nalazi graf *X* (sa indeksom *r*), pri čemu važe isti uslovi: *A* i *B* su korenski grafovi sa korenima *a* i *b*, dok je *X* u prvom slučaju korenski graf sa korenom *x*, a u drugom graf sa dva istaknuta čvora, *x* i *y*. Elemente familije $\mathcal{V}_{\mathbf{x}}$ označićemo sa G(X, A, B), a elemente familije $\mathcal{U}_{\mathbf{x}}$ sa G(X, x, A, y, B). Neka su i preslikavanja α i β određena na isti način, tj. α : $\mathcal{V}_{\mathbf{x}} \rightarrow \mathcal{V}_{\mathbf{x}}$, tako da $\alpha(G_1) = G_2$, gde je $G_1 = G(X, A, B)$ i $G_2 = G(X, A \cdot B, b)$, a β : $\mathcal{U}_{\mathbf{x}} \rightarrow \mathcal{U}_{\mathbf{x}}$, tako da $\beta(G_1) = G_2$, gde je $G_1 = G(X, x, A, y, B)$ i $G_2 = G(X, x, A \cdot B, y, b)$.

Iskazaćemo uopštenja Teorema 2.1. i 2.2., a dokaze izostavljamo, jer su isti kao u navedenim teoremama, samo što se sada umesto RS-teoreme koristi GRS-teorema.

Teorema 6.2. Neka je G = G(X, A, B) graf iz familije $\mathcal{V}\mathfrak{r}$. Tada važi $\operatorname{sgn}(\lambda_2(G) - r) = \operatorname{sgn}(\lambda_2(\alpha(G)) - r).$

Teorema 6.3. Neka je G = G(X, x, A, y, B) graf iz familije $\mathcal{U}_{\mathcal{U}}$ za koji važi $P_{G-x}(r) = P_{G-y}(r)$. Tada važi $\operatorname{sgn}(\lambda_2(G) - r) = \operatorname{sgn}(\lambda_2(\beta(G)) - r)$.

Na isti način kao i u slučaju refleksivnih grafova možemo definisati α - i β ekvivalenciju u klasama $v_{\mathbf{r}}$, tj. $u_{\mathbf{r}}$.

Sa $\mathcal{F}_{\mathbf{x}}$ označićemo familiju povezanih grafova koji sadrže bar jedan trougao, na čije su čvorove redom oslonjeni korenski grafovi X, A i B (sa korenima x, a i b), pri čemu je X maksimalni graf za osobinu $\lambda_1 \leq r$, a njene elemente sa C(X, A, B); njenu podfamiliju koja sadrži elemente $C(X, A \cdot X', B)$, označićemo sa $\mathcal{F}_{\mathbf{x}}$; a sa $\mathcal{C}_{\mathbf{x}}$ označavamo familiju povezanih grafova koji sadrže bar jedan četvorougao, na čije su čvorove oslonjeni korenski grafovi X, A, B i X' (sa korenima x, a, b i y respektivno), pri čemu su X i X' proizvoljni maksimalni grafovi za osobinu $\lambda_1 \leq r$, a elemente te familije sa C(X, A, B, X'). Predstavnici ovih familija izgledaju kao grafovi sa Slike 20. a), b) tj. c) i e), samo što se na mestu Smitovih grafova nalaze X grafovi. Preslikavanja ω , τ i φ određujemo analogno, kao uopštenja preslikavanja iz druge glave, sa:

-
$$\omega: \mathcal{I} \mathfrak{r} \to \mathcal{V} \mathfrak{r}$$
, pri čemu je $\omega(G_1) = G_2$, gde je $G_1 = C(X, A, B)$, a $G_2 = G(X, A, B)$;

- $\tau : \mathcal{F} \iota' \to \mathcal{V}$, pri čemu je $\tau(G_1) = G$ i $\tau(G_2) = G$, gde je $G_1 = C(X, A \cdot X', B)$, tj. $G_2 = C(X, A, B \cdot X')$ i G = G(X, A, B)

- $\varphi: \mathcal{Q} \to \mathcal{V}$, određeno je sa $\varphi(G_1) = G_2$, gde je $G_1 = C(X, A, B, X')$, a $G_2 = G(X, A, B)$.

Iskazaćemo i uopštenja Teorema 2.3., 2.4. i 2.5., takođe bez dokaza.

Teorema 6.4. Neka je graf $G \in \mathcal{F}$ dat sa G = C(X, A, B). Tada važi implikacija: $\operatorname{sgn}(\lambda_2(\omega(G)) - r) \in \{-1, 0\} \Longrightarrow \operatorname{sgn}(\lambda_2(G) - r) = -1$.

Teorema 6.5. Neka je X' proizvoljan graf sa indeksom r i neka je graf $G \in \mathcal{F}\mathfrak{u}'$, dat sa $G = C(X, A \cdot X', B)$. Tada važi: $\operatorname{sgn}(\lambda_2(G) - r) = \operatorname{sgn}(\lambda_2(\tau(G) - r))$.

Teorema 6.6. Neka je G = C(X, A, B, X') graf iz familije \mathcal{Q} . Tada je $P_G = 0$ i važe sledeće ekvivalencije:

1)
$$\lambda_2(\varphi(G)) \le r \Leftrightarrow \operatorname{sgn}(\lambda_2(\varphi(G)) - r) = \operatorname{sgn}(\lambda_3(G) - r) \land \lambda_2(G) = r$$
,

2)
$$\lambda_2(\varphi(G)) > r \Leftrightarrow \lambda_2(G) > r$$
.

Ekvivalencije τ , $\tau \alpha$, φ i $\varphi \alpha$ definisane su i u opštem slučaju analogno slučaju kad je r = 2.

6.3. Primeri klasa grafova sa osobinom $\lambda_2 \leq r$

Analogno ulozi Smitovih grafova kao podgrafova refleksivnih grafova, razmotrićemo ulogu X-grafova kao podgrafova grafa G sa osobinom $\lambda_2 \leq r$.

Koristeći osobine α -preslikavanja formulisaćemo teoremu koja opisuje sve grafove klase $\mathcal{V}_{\mathcal{I}}$ sa osobinom $\lambda_2 \leq r$.

Teorema 6.7. Neka je G_1 GRS-neodlučiv graf iz familije $\mathcal{V}_{\mathcal{I}}$ (Slika 81.a). Tada G_1 ima osobinu $\lambda_2(G_1) \leq r$ ako i samo ako za graf $C = A \cdot B$ koji je nastao identifikacijom korenskih čvorova grafova A i B sa čvorom v (Slika 82.) važi $P_C(r) + rP_{\overline{C}}(r) \geq 0$, gde je $\overline{C} = C - v$.

Slika 81. Grafovi familije *Vr*

Dokaz: Neka je G_1 graf familije \mathcal{Vr} (Slika 81.a) sa osobinom $\lambda_2(G_1) \leq r$. Prema Teoremi 6.2. važi $\lambda_2(G_1) \leq r \Leftrightarrow \lambda_2(G_2) \leq r$, gde je G_2 odgovarajući graf sa Slike 81.b). Iz $\lambda_2(G_2) \leq r$ sledi $\lambda_1(\overline{A}), \lambda_1(\overline{B}) < r$ i po GRS-teoremi sledi $\lambda_2(G_2 - C) < r$, pa je po Teoremi o preplitanju $\lambda_2(G_2 - b) < r$, tj. $\lambda_3(G_2) < r$, a kako je $\lambda_1(G_2) > r$, biće $P_{G_2}(r) \leq 0$. Kako za karakteristični polinom grafa G_2 važi:

$$P_{G_{\gamma}}(\lambda) = P_{C}(\lambda)(\lambda P_{X}(\lambda) - P_{\bar{X}}(\lambda)) - \lambda P_{\bar{X}}(\lambda)P_{\bar{C}}(\lambda),$$

gde je $\overline{X} = X - x$, u tački *a* iz $P_{G_2}(r) \le 0$ sledi $P_C(r) + rP_{\overline{C}}(r) \ge 0$, jer je $P_{\overline{X}_1}(r) > 0$.

Obrnuto, neka je G_1 graf familije $\mathcal{V}_{\mathbf{i}}$ sa osobinom da za odgovarajući graf $C = A \cdot B$ važi $P_C(r) + rP_{\overline{C}}(r) \ge 0$. Tada za karakteristični polinom odgovarajućeg grafa G_2 važi $P_{G_2}(r) \le 0$. Kako po Teoremi o preplitanju važi $\lambda_3(G_2) < r$ na osnovu $\lambda_2(G_2 - x) < r$ (što sledi iz $\lambda_1(\overline{X}) < r$ i $\lambda_2(A \cdot B) < r$, zbog GRS-neodlučivosti), možemo zaključiti da je $\lambda_2(G_2) \le r$, a iz toga da je i $\lambda_2(G_1) \le r$. \Box

Slika 82. Podgraf C

Na osnovu prethodne leme može se pojednostaviti određivanje svih grafova iz familije $\mathcal{V}_{\mathbf{r}}$ sa osobinom $\lambda_2 \leq r$, tako što se ono svodi na određivanje odgovarajućih podgrafova *C* (Slika 82.b) kao što je urađeno za klasu *R*₁. Preciznije, bilo bi dovoljno odrediti sve grafove *C* za koje važi: 1) $\lambda_1(C) > r$, 2) $\lambda_1(\overline{C}) < r$ i 3) $P_C(r) + rP_{\overline{C}}(r) \geq 0$.

Posmatrajmo sad familije $\mathcal{T}r'$ i $\mathcal{Q}r$.

Teorema 6.8. Neka je $G_1 = C(X, A \cdot X', B)$ GRS-neodlučiv graf iz familije $\mathcal{F}n'$. Tada G_1 ima osobinu $\lambda_2(G_1) \le r$ ako i samo ako za graf $C = A \cdot B$ koji je nastao identifikacijom korenskih čvorova grafova A i B sa čvorom v (Slika 82.a) važi $P_C(r) + rP_{\overline{C}}(r) \ge 0$, gde je $\overline{C} = C - v$.

Dokaz: Sledi iz Teoreme 6.7. i Teoreme 6.5.□

Teorema 6.9. Neka je $G_1 = C(X, A, X', B)$ GRS-neodlučiv graf iz familije $\mathcal{Q}_{\mathcal{H}}$. Tada G_1 ima osobinu $\lambda_2(G_1) \leq r$ ako i samo ako za graf $C = A \cdot B$ koji je nastao identifikacijom korenskih čvorova grafova A i B sa čvorom v (Slika 82.a) važi $P_C(r) + rP_{\overline{C}}(r) \geq 0$, gde je $\overline{C} = C - v$.

Dokaz: Sledi iz Teoreme 6.7. i Teoreme 6.6.□

Posmatrajmo sada graf *G* koji se sastoji od centralne konture koja je četvorougao, na čiji je svaki od čvorova x_i (i = 1, 2, 3, 4) oslonjen odgovarajući podgraf H_i (Slika 83.).

Slika 83. Graf iz familije Qr

Lema 6.1. Neka je H_1 proizvoljan X-graf i neka za bar jedno $i \in \{2,4\}$ važi $\lambda_1(\bar{H}_i) \ge r$. Tada važi $\lambda_2(G) > r$ (Slika 83).

Dokaz: Sledi iz GRS-teoreme.

Teorema 6.10. Neka je H_1 proizvoljan X-graf i neka važi $\lambda_1(\bar{H}_2), \lambda_1(\bar{H}_4) < r$. Tada za graf G (Slika 83.) važi:

1) ako je $\lambda_1(H_3) > r$, onda važi $\lambda_2(G) > r$;

2) ako je
$$\lambda_1(H_3) = r$$
, onda važi $\lambda_2(G) > r \Leftrightarrow \lambda_2(G - H_3) > r$ ili važi
 $\lambda_2(G) = r \wedge \operatorname{sgn}(\lambda_3(G) - r) = \operatorname{sgn}(\lambda_2(G - H_3) - r);$

3) ako je $\lambda_1(H_3) < r$, onda $\operatorname{sgn}(\lambda_2(G) - r) = \operatorname{sgn}(\lambda_2(G - H_3) - r)$.

Dokaz: Pre svega, izračunaćemo karakteristični polinom grafa *G*, kao i karakteristični polinom grafa $G - H_3$ pomoću Švenkovih lema. Iz $P_G(\lambda) = P_{H_1}(\lambda)P_{H_2}(\lambda)P_{H_3}(\lambda)P_{H_4}(\lambda) - (P_{H_1}(\lambda)P_{\bar{H}_3}(\lambda) + P_{\bar{H}_1}(\lambda)P_{H_3}(\lambda))(P_{H_2}(\lambda)P_{\bar{H}_4}(\lambda) + P_{\bar{H}_2}(\lambda)P_{H_4}(\lambda)),$ sledi $P_G(r) = -P_{\bar{H}_1}(r)P_{H_3}(r)(P_{H_2}(r)P_{\bar{H}_4}(r) + P_{H_4}(r)P_{\bar{H}_2}(r)),$ zbog $\lambda_1(H_1) = r$, a iz $P_{G-H_3}(\lambda) = P_{H_1}(\lambda)P_{H_2}(\lambda)P_{H_4}(\lambda) - P_{\bar{H}_1}(\lambda)(P_{H_2}(\lambda)P_{\bar{H}_4}(\lambda) + P_{\bar{H}_2}(\lambda)P_{H_4}(\lambda))$ sledi $P_{G-H_3}(r) = -P_{\bar{H}_1}(r)(P_{H_2}(r)P_{\bar{H}_4}(r) + P_{\bar{H}_2}(r)P_{H_4}(r)),$ tako da važi i veza $P_G(r) = P_{H_3}(r)P_{G-H_3}(r)$.

- 1) Sledi iz GRS-teoreme.
- 2) Iz $\lambda_1(H_3) = r$, primenom Teoreme 6.6. sledi tvrđenje.

3) Iz $\lambda_1(H_3) < r$ pre svega sledi da je $\lambda_3(G) < r$. Naime, po GRS-teoremi primenjenoj npr. na čvor x_2 grafa $G - H_4$ sledi $\lambda_2(G - H_4) < r$, pa je $\lambda_2(G - x_4) < r$, a time i $\lambda_3(G) < r$. Za graf $G - H_3$ takođe važi $\lambda_3(G - H_3) < r$, jer je $\lambda_2(G - H_3 - x_4) < r$, po GRS-teoremi primenjenoj na čvor x_2 grafa $G - H_3 - H_4$. Osim toga, zbog $P_{H_3}(r) > 0$ sledi da je sgn $(P_G(r)) = \text{sgn}(P_{G-H_3}(r))$, a kako su indeksi oba grafa G i $G - H_3$ veći od r, sledi tvrđenje. \Box

Na osnovu prethodne, možemo iskazati sličnu teoremu koja upoređuje $\lambda_2(G)$ sa r.

Teorema 6.11. Neka je H_1 proizvoljan X-graf i neka važi $\lambda_1(\overline{H}_2), \lambda_1(\overline{H}_4) < r$. Tada za graf G važi:

1) $\lambda_2(G) > r \Leftrightarrow \lambda_1(H_3) > r \lor \lambda_2(G - H_3) > r;$

2)
$$\lambda_2(G) = r \Leftrightarrow (\lambda_1(H_3) = r \land \lambda_2(G - H_3) < r) \lor (\lambda_1(H_3) < r \land \lambda_2(G - H_3) = r);$$

3)
$$\lambda_2(G) < r \Leftrightarrow \lambda_1(H_3) < r \land \lambda_2(G - H_3) < r$$

Dokaz: 1) Ako je $\lambda_1(H_3) > r$, po GRS-teoremi je $\lambda_2(G) > r$; takođe, ovo direktno sledi iz $\lambda_2(G - H_3) > r$.

Pretpostavimo da je $\lambda_2(G) > r$ i $\lambda_1(H_3) \le r$. Po prethodnoj teoremi u oba slučaja sledi da je $\lambda_2(G-H_3) > r$.

2) Ako je $\lambda_1(H_3) = r$ i $\lambda_2(G - H_3) < r$, opet po prethodnoj teoremi sledi $\lambda_2(G) = r$, a ako je $\lambda_1(H_3) < r$, po GRS-teoremi sledi $\lambda_3(G) < r$, pa zbog $\lambda_2(G - H_3) = r$ tj. $P_G(r) = 0$, sledi $\lambda_2(G) = r$.

Ako je $\lambda_2(G) = r$, onda je $P_G(r) = P_{H_3}(r)P_{G-H_3}(r) = 0$, pa iz $P_{H_3}(r) = 0$ sledi $\lambda_1(H_3) = r$, , a svakako važi $\lambda_2(G-H_3) \le r$; a ako je $\lambda_1(H_3) < r$, sledi $\operatorname{sgn}(\lambda_2(G)-r) = \operatorname{sgn}(\lambda_2(G-H_3)-r)$, tj. $\lambda_2(G-H_3) = r$.

3) Ako je $\lambda_1(H_3) < r$, sledi $\lambda_3(G) < r$, a pošto je i $\lambda_2(G-H_3) < r$ važiće $P_G(r) < 0$, pa sledi $\lambda_2(G) < r$.

Ako je $\lambda_2(G) < r$, mora biti $\lambda_2(G - H_3) < r$, a tada bi iz $\lambda_1(H_3) = 0$ sledilo $\lambda_2(G) = r$, što je kontradikcija, pa zaključujemo da je $\lambda_1(H_3) < r$. \Box

Teoremu 6.9. možemo uopštiti tako da se odnosi na širi slučaj, koji između ostalog obuhvata i jednu klasu θ -grafova.

Teorema 6.12. Neka je G_n GRS-neodlučiv graf prikazan na Slici 84. takav da su $X_1, ..., X_n$ X-grafovi. Tada je $\lambda_2(G_n) \le r$ ako i samo ako za graf $C = A \cdot B$ koji je nastao identifikacijom korenskih čvorova grafova A i B sa čvorom v (Slika 82.a)) važi $P_C(r) + rP_{\overline{C}}(r) \ge 0$, gde je $\overline{C} = C - v$.

Slika 84. Graf G_n

Dokaz: Ako je $\lambda_2(G) \le r$, onda je i $\lambda_2(G - X_3 - ... - X_n) \le r$, a onda po Teoremi 6.9. sledi da je $P_C(r) + rP_{\overline{C}}(r) \ge 0$.

Neka za $C = A \cdot B$ važi $P_C(r) + rP_{\overline{C}}(r) \ge 0$, što je ekvivalentno sa $P_A(r)P_{\overline{B}}(r) + P_{\overline{A}}(r)P_B(r) \ge 0$. Radi skraćivanja uvešćemo oznake $P = P(\lambda)$, kao i $P_i = P_{X_i}$ i $\overline{P}_i = \overline{P}_{X_i}$. Primenom indukcije dokazaćemo da je $P_{G_n} = P_A P_B P_1 \dots P_n - (P_{\overline{A}} P_B + P_A P_{\overline{B}})(\overline{P}_1 P_2 \dots P_n + P_1 \overline{P}_2 \dots P_n + \dots P_1 P_2 \dots \overline{P}_n)$, kao i da je $\lambda_{n+2}(G_n) < r$.

Za n = 1, očigledno važi da je $P_{G_1} = P_A P_B P_1 - (P_A P_{\overline{B}} + P_{\overline{A}} P_B) \overline{P_1}$, kao i $\lambda_3(G_1) < r$ (na osnovu GRS-teoreme i Teoreme o preplitanju).

Slika 85. Graf H_n

Pretpostavimo da tvrđenje važi za P_{G_n} i dokažimo da važi i za $P_{G_{n+1}}$. Uočimo graf H_n (Slika 85.) za koji važi $P_{H_n} = \lambda P_1 \dots P_n - \overline{P_1} P_2 \dots P_n - \dots - P_1 P_2 \dots \overline{P_n}$. Koristeći Švenkove leme dobija se:

$$\begin{split} P_{G_{n+1}} &= P_{n+1}P_{G_n} + \bar{P}_{n+1}[\lambda P_{G_n} - P_{\bar{A}}(P_B P_1 \dots P_n + P_{\bar{B}} P_{H_n} - \lambda P_{\bar{B}} P_1 \dots P_n) - \\ P_{\bar{B}}(P_A P_1 \dots P_n + P_{\bar{A}} P_{H_n} - \lambda P_{\bar{A}} P_1 \dots P_n) - 2P_{\bar{A}} P_{\bar{B}}(\bar{P}_1 P_2 \dots P_n + \dots + P_1 P_2 \dots \bar{P}_n)] - \lambda \bar{P}_{n+1} P_{G_n} = \\ &= P_{n+1} P_{G_n} - \bar{P}_{n+1}[(P_{\bar{A}} P_B + P_A P_{\bar{B}}) P_1 \dots P_n + 2P_{\bar{A}} P_{\bar{B}}(P_{H_n} - \lambda P_1 \dots P_n - (\bar{P}_1 P_2 \dots P_n + \dots + P_1 P_2 \dots \bar{P}_n)] = \\ &= P_{n+1} P_{G_n} - \bar{P}_{n+1}(P_{\bar{A}} P_B + P_A P_{\bar{B}}) P_1 \dots P_n = \\ &= P_A P_B P_1 \dots P_n P_{n+1} - (P_{\bar{A}} P_B + P_A P_{\bar{B}})(\bar{P}_1 P_2 \dots P_n P_{n+1} + P_1 \bar{P}_2 \dots \bar{P}_n P_{n+1} + \dots P_1 P_2 \dots \bar{P}_n P_{n+1} + P_1 P_2 \dots P_n \bar{P}_{n+1}), \end{split}$$

što je i trebalo dokazati. Pretpostavimo takođe da je $\lambda_{n+2}(G_n) < r$. Tada je i $\lambda_{n+2}(G_{n+1}) < r$ jer je $\lambda_1(\bar{X}_{n+1}) < r$, pa je i $\lambda_{n+3}(G_{n+1}) < r$. Ako je polinom *P* deljiv sa $\lambda - r$, sa *Q* ćemo označiti polinom takav da je $P = (\lambda - r)Q$, pa ćemo uočiti da važi:

$$P_{G_n} = P_A P_B P_1 \dots P_n - (P_{\bar{A}} P_B + P_A P_{\bar{B}})(\bar{P}_1 P_2 \dots P_n + P_1 \bar{P}_2 \dots P_n + \dots P_1 P_2 \dots \bar{P}_n) =$$

= $(\lambda - r)^{n-1} [P_A P_B Q_1 \dots Q_{n-1} P_n - (P_{\bar{A}} P_B + P_A P_{\bar{B}})(\bar{P}_1 Q_2 \dots Q_n + Q_1 \bar{P}_2 \dots Q_n + \dots + Q_1 Q_2 \dots \bar{P}_n)],$

tj. $P_{G_n} = (\lambda - r)^{n-1}M$, gde smo sa M označili polinom $P_A P_B Q_1 \dots Q_{n-1} P_n - (P_{\overline{A}} P_B + P_A P_{\overline{B}}) (\overline{P}_1 Q_2 \dots Q_n + Q_1 \overline{P}_2 \dots Q_n + \dots + Q_1 Q_2 \dots \overline{P}_n)$.

Ako je $P_A(r)P_{\overline{B}}(r) + P_{\overline{A}}(r)P_B(r) > 0$, važiće M(r) < 0, jer je $\overline{P}_1(r)Q_2(r)...Q_n(r) + Q_1(r)\overline{P}_2(r)...Q_n(r) + ... + Q_1(r)Q_2(r)...\overline{P}_n(r) > 0$, a $P_n(r) = 0$; pa je $\lambda_2(G_n) = ... = \lambda_n(G_n) = r$ i $\lambda_{n+1}(G_n) < r$. Ako je $P_A(r)P_{\overline{B}}(r) + P_{\overline{A}}(r)P_B(r) = 0$, biće i M(r) = 0, pa se $(\lambda - r)^n$ sadrži u P_{G_n} , a kako je $\lambda_{n+2}(G_n) < r$ i indeks grafa G_n veći od r, važiće $\lambda_2(G_n) = ... = \lambda_{n+1}(G_n) = r$. U oba slučaja važi $\lambda_2(G_n) = r$. \Box

Definišimo sada graf kao kvaziuniciklički ako sadrži konturu C dužine n na čije su čvorove $x_1,...,x_n$ oslonjeni grafovi $H_1,...,H_n$ kao na Slici 86.

Slika 86. Kvaziuniciklički graf

Diskutujemo položaj X grafova u kvaziunicikličkim grafu.

Teorema 6.13. Ako za kvaziuniciklički graf *G* važi $\lambda_2(G) \le r$, onda važi:

1) ako je $g(C) = n \ge 5$, na čvorove konture mogu biti oslonjena najviše dva X grafa i to u susednim čvorovima;

2) ako je g(C) = n = 4, na čvorove konture mogu biti oslonjena najviše četiri *X* grafa i to na jedan od načina prikazanih na Slici 87.a)
3) ako je g(C) = n = 3, na čvorove konture mogu biti oslonjena najviše četiri *X* grafa i to na jedan od načina prikazanih na Slici 87.b).

Dokaz: 1) Ako bi dva X grafa bila oslonjena na čvorove konture koji nisu susedni, po GRS-teoremi bi sledilo $\lambda_2(G) > r$.

Slika 87. Grafovi sa strukom 3 i 4

- 2) Sledi iz Teoreme 6.9. i 6.7.
- 3) Sledi iz Teoreme 6.8. i 6.7.

7. Još neke klase grafova sa datim ograničenjem druge sopstvene vrednosti

U ovoj glavi opisaćemo neke klase grafova kojima je druga sopstvena vrednost ograničena sa $\sqrt{2}$, $\frac{\sqrt{5}+1}{2}$ ili sa $\sqrt{3}$. Ove vrednosti birali smo kao pogodne, jer za svaki od ovih brojeva postoje odgovarajući *X*-grafovi i jednostavno ih je odrediti, pa ćemo moći da koristimo GRS-teoremu i njene posledice. Ograničenje $\sqrt{2}$ pojavljuje se prvi put u [57] gde su opisana sva stabla i sve šume sa osobinom $\lambda_2 \le \sqrt{2}$, neka minimalna zabranjena stabla za istu osobinu, kao i svi regularni i semiregularni bipartitni grafovi sa osobinom $\lambda_2 = \sqrt{2}$. Ograničenje $\frac{\sqrt{5}+1}{2}$ pojavljuje se prvi put u [29], a $\sqrt{3}$ u [21] i [28], tako da su ovde predstavljeni novi rezultati. U dokazima se u izvesnoj meri koristi i programski paket newGRAPH [1], [9] koji između ostalog izračunava numeričke karakteristike velikog broja osobina grafa, pa tako i približno određuje drugu sopstvenu vrednost grafa. Međutim, zbog zaokruživanja, u određenim slučajevima neophodno je izvršiti proveru tačnim izračunavanjem karakterističnog polinoma korišćenjem Švenkovih lema ili korišćenjem GRS-teoreme i Teoreme o preplitanju.

7.1. Neke klase grafova sa osobinom $\lambda_2 \le \sqrt{2}$

U ovom delu odredićemo sve maksimalne GRS-neodlučive grafove za osobinu $\lambda_2 \leq \sqrt{2}$ u okviru određenih klasa, i to u delu 7.1.1. u klasi unicikličkih kaktusa, u 7.1.2. u klasi multicikličkih kaktusa, a u delu 7.1.3. u klasi θ -grafova.

Prethodno konstatujemo da postoji tačno jedan X-graf za osobinu $\lambda_1 \le \sqrt{2}$ i da je to P_3 , čiji su jedini pravi podgrafovi P_1 i P_2 , dok su jedina minimalna zabranjena stabla za ovu osobinu P_4 i $K_{1,3}$. U sledećim tabelama navedene su vrednosti karakterističnog polinoma $P(\sqrt{2})$, što ćemo u ovoj glavi kraće označavati sa P, za neka jednostavna stabla i konture čija je dužina manja od 8.

т	1	2	3	4	5	6	7	8
P_{P_m}	$\sqrt{2}$	1	0	-1	$-\sqrt{2}$	-1	0	1
P_{C_m}	/	/	$-2 - \sqrt{2}$	-4	$-2 - \sqrt{2}$	-2	$2 - \sqrt{2}$	0
P_{D_m}	/	/	/	-2	$-2\sqrt{2}$	-2	0	2

Tabela 24. Vrednosti P za P_m , C_m i D_m

Tabela 25. Vrednosti P za još neke grafove

G	E_{6}^{6}	$C_3 \cdot P_2$	$C_4 \cdot P_2$
P_{G}	-3	$-3-2\sqrt{2}$	$-4\sqrt{2}$

Ako su $X_1,...,X_n$ X-grafovi, tj. grafovi čiji je indeks jednak $\sqrt{2}$, koalescenciju $B_n = X_1 \cdot ... \cdot X_n$ sa korenom v formiranu tako da je po jedan čvor svakog od grafova $X_1,...,X_n$ identifikovan sa v, zvaćemo snop X-grafova (sa artikulacionim čvorom v). Primenom Švenkove leme ustanovljava se da je $P_{B_n} = -(n-1)\sqrt{2}\overline{B}_n$ ($\overline{B}_n = B_n - v$). Sa G_n označićemo koalescenciju $C_m \cdot B_n$, gde je C_m kontura dužine *m*, pa prema tome važi $P_{G_n} = (P_{C_m} - n\sqrt{2}P_{P_{m-1}})\overline{B}_n$.

7.1.1. Uniciklički kaktusi sa osobinom $\lambda_2 \leq \sqrt{2}$

Neka je G uniciklički kaktus koji sadrži konturu C_m (g(G) = m). Ako je $g(G) \ge 9$, pošto je $\lambda_2(C_m) = 2\cos\frac{2\pi}{m}$, sledi da je $\lambda_2(G) > \sqrt{2}$. U daljoj diskusiji, datoj u Lemama 7.1.-7.3. poći ćemo od osnovnog grafa C_m ($m \le 8$), pa ćemo dodavanjem grana ili primenom preslikavanja opisanih u glavi 6. određivati maksimalne kaktuse za osobinu $\lambda_2 \le \sqrt{2}$.

Lema 7.1. Jedini uniciklički kaktusi za koje je g(G) = 8 ili g(G) = 7 koji su maksimalni za osobinu $\lambda_2 \le \sqrt{2}$ su C_8 i C_7 .

Dokaz: Kako je $P_{C_8} = 0$ i $P_{C_7} = \sqrt{2} - 2$, za ove konture važi $\lambda_2 \le \sqrt{2}$, ali se u oba slučaja dodavanjem viseće grane na proizvoljni čvor konture dobije graf koji nema ovu osobinu, tako da su C_8 i C_7 maksimalni grafovi.

Lema 7.2. Maksimalni uniciklički kaktusi za osobinu $\lambda_2 \leq \sqrt{2}$ su, u slučaju da je g(G) = 6 grafovi tipa $M_1 - M_3$, a u slučaju da je g(G) = 5, grafovi tipa $M_4 - M_7$ (Slika 87).

Dokaz: U oba slučaja na proizvoljan čvor konture se može dodati put čija dužina nije veća od 2, jer se u protivnom dobija GRS-odlučiv graf čija je druga sopstvena vrednsot veća od $\sqrt{2}$. Kako je P_3 zapravo X graf, analiziraćemo prvo položaj X grafova oslonjenih na čvorove konture.

Neka je g(G) = 6. Napomenimo da je $P_{G_n} = 2(n-1)P_{\overline{B}_n}$ ($P_{\overline{B}_n}$ je uvek pozitivno), pa sledi da se na jedan čvor konture može dodati najviše jedan X-graf, a po Teoremi 6..... ovakav graf može imati ukupno najviše dva X-grafa oslonjena na čvorove konture, i to susedne. Za sve ovakve grafove (ima ih 3) kažemo da su tipa M_1 (Slika 87.a)). Za njih je $P_G = 0$, pa je $\lambda_2(G) = \sqrt{2}$, a svako proširenje daje graf za koji λ_2 postaje veće od $\sqrt{2}$. Obe činjenice mogu se proveriti pomoću Švenkovih lema i GRS-teoreme, ali jednim delom i kraće, uz pomoć ekspertskog paketa newGRAPH, koji ćemo i ubuduće koristiti. Ako je na tačno jedan čvor konture oslonjen X-graf, onda je dodavanje nove grane dozvoljeno samo na susedne čvorove i to istivremeno, što daje grafove tipa M_2 (Slika 88.a)), kojih ima 2. Ako su na čvorove konture dodate samo viseće grane, dobija se samo jedan maksimalni dozvoljeni graf, a to je M_3 (Slika 88.a)).

Slika 88. Grafovi $M_1 - M_7$

Neka je g(G) = 5. Na jedan čvor konture može biti dodat snop od najviše dva X-grafa, jer je $P_G = (n\sqrt{2} - 2 - \sqrt{2})P_{\overline{B}_n}$. Grafovi tipa M_4 (Slika 88.b)) ne dozvoljavaju proširenje visećom granom ni u jednom čvoru konture, pa su maksimalni (ima ih 3). Takođe su maksimalna i tri grafa tipa M_5 (Slika 88.b)). Ako je na konturu u proizvoljnom čvoru dodat samo jedan X-graf, može se dodati po jedna viseća grana na taj isti čvor, kao i na oba susedna, što daje dva grafa tipa M_6 (Slika 88.b)), a ako nema dodatih X-grafova, nego samo visećih grana, maksimalni dozvoljeni graf je M_7 (Slika 88.b)). \Box

Lema 7.3. Maksimalni uniciklički kaktusi za osobinu $\lambda_2 \le \sqrt{2}$ su, u slučaju da je g(G) = 4 grafovi tipa $M_8 - M_{11}$, a u slučaju da je g(G) = 3, grafovi tipa $M_{15} - M_{18}$.

Dokaz: Neka je g(G) = 4. Sada moraju bar 2 različita čvora konture biti dodatno opterećena, u protivnom se dobija GRS-odlučiv graf. Neka je na jedan čvor konture oslonjen snop B_n u artikulacionom čvoru. Ako je na susedan čvor oslonjena viseća grana, iz $P_G = \sqrt{2}(n-4)P_{\overline{B}_n} \le 0$, sledi $n \le 4$, a ako je viseća grana oslonjena jedino na nesusedan čvor, iz $P_G = 2(n-2)\sqrt{2}P_{\overline{B}_n} \le 0$, sledi $n \le 2$. Zbog toga u slučaju da je n = 4 dolazimo jedino do maksimalnih grafova tipa M_8 sa Slike 89.a) (ima ih 5), jer je dalje proširivanje nemoguće, a kad je n = 3, samo do maksimalnih grafova tipa M_9 sa Slike 89.a) (ima ih 4). Za n = 2 i dodatu viseću granu na nesusedan čvor dobijaju se maksimalni grafovi tipa M_{10} (Slika 89.a)), kojih ima 3, ali je inače moguće, ali samo na susedni čvor, dodati i ceo X-graf. Zato ćemo prvo opisati sve maksimalne grafove do kojih se može doći primenom Teorema 6.9. i 6.13., koja se odnosi na slučaj kad je na jedan čvor konture oslonjen samo jedan X-graf, ali se onda može ustanoviti da svi ostali

slučajevi potpadaju pod ovaj. Na osnovu Teoreme 6.9. tražimo sva maksimalna stabla *C* za koja važi uslov $P_C + \sqrt{2}P_{\overline{C}} \ge 0$ (naravno, uz uslove da je *C* nadgraf grafa P_3 , a komponente grafa \overline{C} pravi pografovi od P_3). Pošto *C* mora biti koalescencija puteva dužine 2 ili 3, formirana u korenu, lako se dobija da je to jedino moguće kad je $C = X_3 \cdot X_4$ (koalescencija je takođe formirana u korenu), gde su X_3, X_4 proizvoljni *X*grafovi. Tako dobijamo grafove tipa M_{11} (21 graf). Na Slici 89.b), prvo je predstavljen slučaj kad je koalescencija $X_3 \cdot X_4$ oslonjena na jedan čvor, a zatim opšti slučaj, koji obuhvata prethodni, gde je $X_3 = X_{31} \cdot X_{32}$ i $X_4 = X_{41} \cdot X_{42}$.

Slika 89. Grafovi $M_8 - M_{11}$

U slučaju kad je m = 3, moguće je da se optereti samo jedan čvor konture, npr. x, korenskim stablom D, ali tada zbog GRS-teoreme D-x mora biti nadgraf grafa P_3 , jer je $C_3 - x$ pravi podgraf tog grafa. Međutim, ako zamenimo D-x na bilo koji način minimalnim zabranjenim stablom P_4 ili $K_{1,3}$ dobijamo graf sa $\lambda_2 > \sqrt{2}$. Dakle, ipak moraju biti opterećena bar dva različita čvora konture.

Slika 90. Grafovi $M_{12} - M_{14}$

Slučaj kad je na svaki čvor konture dodat po jedan nadgraf X-grafa moguć je samo u slučaju maksimalnih grafova tipa M_{12} sa Slike 90. (4 grafa), a slučaj kad je na jedan čvor dodat snop B_5 sa mogućim proširenjima daje grafove tipa M_{13} sa Slike 90. (6

grafova). Ako je na jedan od čvorova konture dodat samo jedan X-graf, primenićemo Teoreme 6.8. i 6.7. i dobićemo grafove tipa M_{14} (27 grafova), prikazane na Slici 90. gde su $X_1 = X_{11} \cdot X_{12}, X_2 = X_{21} \cdot X_{22}, X_3 = X_{31} \cdot X_{32}$ i X_4 X-grafovi Svi ostali slučajevi svode se na prethodne, ili na njihove podgrafove.

Na osnovu prethodnih lema, sledi teorema koja određuje sve maksimalne unicikličke kaktuse sa osobinom $\lambda_2 \leq \sqrt{2}$.

Teorema 7.1. Neka je G uniciklički kaktus sa osobinom $\lambda_2 \leq \sqrt{2}$. Tada je G jednak grafu C_7 ili C_8 , ili je podgraf jednog od grafova tipa $M_1 - M_{14}$ (Slike 88.,89.,90.).

7.1.2. Multiciklički kaktusi sa osobinom $\lambda_2 \leq \sqrt{2}$

U ovom delu opisaćemo sve GRS-neodlučive multicikličke kaktuse sa osobinom $\lambda_2 \leq \sqrt{2}$. Zbog jednostavnosti rezultata, predstavljamo ih odmah u Teoremi 7.2.

Teorema 7.2. Ako je graf G maksimalni GRS-neodlučiv kaktus sa bar dve konture sa osobinom $\lambda_2 \leq \sqrt{2}$, on mora biti jedan od grafova $G_1 - G_6$ (Slika 91.).

Slika 91. Grafovi $G_1 - G_6$

Dokaz: U slučaju GRS-neodlučivog multicikličkog kaktusa, jasno je da njegove konture moraju formirati snop, jer je u protivnom $\lambda_2 > \sqrt{2}$. Takođe, pokazuje se da iz istog razloga u snopu može biti najviše dve konture. Po odstranjivanju artikulacionog čvora iz ovog grafa jedna komponenta mora biti nadgraf P_3 , a druga njegova pravi podgraf, tj. P_2 . Dakle, snop mora sadržati slobodnu konturu koja je trougao.

Korišćenjem newGRAPH-a ili Švenkovih lema i Tabela 23. i 24. dolazimo do rezultata prikazanih na Slici 91.□

7.1.3. θ -grafovi sa osobinom $\lambda_2 \leq \sqrt{2}$

Ako u bicikličkom grafu G (Slika 92.) dve konture imaju zajednički put, graf nazivamo θ -grafom. Ovaj graf se može formirati i tako što se sa svakim od dva data čvora identifikuje po jedan krajnji čvor puteva dužine *i*, *j* i *k*. Pri tome smatramo da važi $i \le j \le k$ i koristimo oznaku $\theta(i, j, k)$. Čvorovi stepena 3 označeni su sa c_1 i c_2 , dok čvorove susedne *c*-čvorovima nazivamo crnim čvorovima, a ostale čvorove, različite od *c*-čvorova i crnih čvorova, belim čvorovima.

Slika 92. θ-graf

Ako u bicikličkom grafu *G* (Slika 92.) dve konture imaju zajednički put, graf nazivamo θ -grafom. Ovaj graf se može formirati i tako što se sa svakim od dva data čvora identifikuje po jedan krajnji čvor puteva dužine *i*, *j* i *k*. Pri tome smatramo da važi $i \le j \le k$ i koristimo oznaku $\theta(i, j, k)$. Čvorovi stepena 3 označeni su sa c_1 i c_2 , dok čvorove susedne *c*-čvorovima nazivamo crnim čvorovima, a ostale čvorove, različite od *c*-čvorova i crnih čvorova, belim čvorovima.

U θ -grafu sa osobinom $\lambda_2 \leq \sqrt{2}$ za dužine puteva *i*, *j* i *k* važe određena ograničenja. Npr. ako je $i \geq 3$, po odstranjenju crnog čvora sa puta dužine *i* preostaje nadgraf konture dužine j + k, a kako je C_7 maksimalni uniciklički graf, sledi da je $j + k \leq 6$ tj. da je jedino moguće da je i = j = k = 3. Ako je i = 2, po odstranjenju jednog od *c*čvorova preostaje stablo kome takođe λ_2 ne sme da bude veće od $\sqrt{2}$, pa sledi da su mogući slučajevi j = 3 i $k \in \{3,4\}$ ili j = 2 i $k \in \{2,3,4,5\}$. Za i = 1 po odstranjenju bilo kog crnog čvora dobijamo put dužine j + k - 2, pa zbog $\lambda_2 \le \sqrt{2}$ sledi $j + k - 2 \le 6$, tj. $j + k \le 8$, pa su mogući slučajevi j = k = 4 ili j = 3 i $k \in \{3,4,5\}$ ili j = 4 i $k \in \{2,3,4,5,6\}$. Međutim, slučajeve $\theta(2,2,5)$, $\theta(1,2,6)$ i $\theta(1,3,5)$ odmah eliminišemo jer se može pokazati da im je $\lambda_2 > \sqrt{2}$ (npr. koristeći newGRAPH). Ostale slučajeve analiziramo redom, polazeći od osnovnog grafa $\theta(i, j, k)$ i razmatrajući dodavanje novih grana, uz pomoć paketa newGRAPH. Međutim, kad god se korišćenjem ovog paketa dobije da je $\lambda_2 = 1,4142$, primenom Švenkovih lema i GRSteoreme mora se proveriti da li je zaista $\lambda_2 \le \sqrt{2}$ (zapravo, uvek će biti u pitanju baš jednakost) ili je možda ipak $\lambda_2 > \sqrt{2}$. Takođe primećujemo da se proširivanje osnovnog θ -grafa može vršiti jedino dodavanjem visećih grana ili puteva P_3 , u protivnom druga sopstvena vrednost postaje veća od $\sqrt{2}$.

1. $\theta(3,3,3)$

Ovom grafu se mogu dodati samo viseće grane, ali ne u c-čvorovima. Jedina maksimalni grafovi su G_1 i G_2 (Slika 93.).

 $2.\theta(2,3,4)$

Jedini čvor koji je moguće dodatno opteretiti je crni čvor na putu dužine 2, ali se na njega može dodati i P_3 , zapravo proizvoljan X-graf, čime se dobija makimalni graf tipa G_3 (Slika 93.).

3. $\theta(2,3,3)$

Dodavanjem visećih grana na dozvoljene čvorove dobijaju se maksimalni grafovi G_4 i G_5 , dok se ponovo na crni čvor puta dužine 2 može dodati i X-graf i dalje viseća grana, do maksimalnog G_6 (Slika 93.).

Slika 93. Grafovi $G_1 - G_6$

4. $\theta(2,2,4)$

Na crne čvorove puta dužine 4 mogu se dodati samo viseće grane i to dovodi do maksimalnog grafa G_7 . Sa opterećenim crnim čvorom na putu dužine 4 možemo još doći do maksimalnih grafova tipa G_8 koji sadrže X-graf, ali ako ni beli ni crni čvorovi puta dužine 4 nisu dodatno opterećeni, dobijaju se maksimalni grafovi tipa G_9 , u kojima su X_1 , X_2 i $X_3 = X_{31} \cdot X_{32}$ X- grafovi (pri čemu X_{31} ili X_{32} mogu biti i trivijalni). Grafovi su prikazani na Slici 94.

5. $\theta(2,2,3)$

Dodavanjem visećih grana dobijamo maksimalne grafove G_{10} , G_{11} i G_{12} , dok maksimalni graf G_{13} sadrži X-graf, a u grafu G_{14} su X-grafovi X_1 , X_2 i $X_3 = X_{31} \cdot X_{32}$ (pri čemu X_{31} ili X_{32} mogu biti i trivijalni), prikazani na Slici 94.

6. $\theta(2,2,2)$

U ovom slučaju maksimalni grafovi su tipa G_{15} , G_{16} (sadrže X-grafove X_1, X_2 i X_3), G_{17} (u kojima su X-grafovi $X_1, X_2, X_3, X_4 = X_{41} \cdot X_{42}$ i $X_5 = X_{51} \cdot X_{52}$, pri čemu X_{41} ili X_{42} , tj. X_{51} ili X_{52} , mogu biti i trivijalni), ili G_{18} (sadrže snop X-grafova $B_2 = X_1 \cdot X_2$), prikazani na Slici 94. Napomenimo da smo do grafova tipa G_{17} (a oni obuhvataju najviše slučajeva) došli primenom Teoreme 6.12.

Slika 94. Grafovi $G_7 - G_{18}$

7. $\theta(1,4,4)$

Kod ovog grafa moguće je proširivanje samo u c-čvorovima, pri čemu se dobijaju grafovi tipa G_{19} (Slika 95.).

8. $\theta(1,3,4)$

Ovde je takođe moguće proširivanje samo u *c*-čvorovima, čime se dobijaju grafovi tipa G_{20} i G_{21} (Slika 95.).

9.
$$\theta(1,3,3)$$

Uz maksimalne grafove tipa $G_{22} - G_{25}$ koji sadrže X-graf, dobijaju se i grafovi G_{26} i G_{27} koji sadrže snop $B_3 = X_1 \cdot X_2 \cdot X_3$, kao i graf G_{28} koji sadrži snop od dva X-grafa, kao i G_{29} koji sadrži dva X-grafa koja nisu u snopu (Slika 95.).

10. $\theta(1,2,5)$

Osnovni graf je ujedno i maksimalni graf G_{30} .

11. $\theta(1,2,4)$

Maksimalan je graf G_{31} (samo sa visećim granama), grafovi tipa G_{32} koji sadrže jedan X-graf i G_{33} u kome su X-grafovi X_3 , $X_1 = X_{11} \cdot X_{12}$ i $X_2 = X_{21} \cdot X_{22}$, pri čemu X_{11} ili X_{12} , tj. X_{21} ili X_{22} mogu biti i trivijalni (Slika 95.).

Slika 95. Grafovi $G_{19} - G_{29}$ i $G_{31} - G_{33}$

12. $\theta(1,2,3)$

U slučaju da su opterećena oba crna čvora puta dužine 3, maksimalni grafovi su grafovi tipa G_{34} , u kome su X_1 i $X_2 = X_{21} \cdot X_{22}$ (X_{21} ili X_{22} mogu biti i trivijalni) X-grafovi, graf G_{35} i grafovi tipa G_{36} (X_1 i X_2 su X-grafovi). Ako je opterećen samo jedan crni čvor puta dužine 3, dolazimo do maksimalnih grafova tipa G_{37} i G_{38} , u kome su B_3 , tj. B_2 snopovi X-grafova, maksimalnih grafova tipa G_{39} , koji sadrže dva X-grafa i maksimalnih grafova tipa G_{40} sa samo jednim X-grafom. Ako crni čvorovi puta dužine 3 nisu opterećeni, dobijamo maksimalne grafove tipa G_{41} (sa jednim X-grafom), G_{42} (gde su $X_1 = X_{11} \cdot X_{12}$, $X_2 = X_{21} \cdot X_{22}$ i X_3 X-grafovi, pri čemu X_{11} ili X_{12} , tj. X_{21} ili X_{22} mogu biti i trivijalni), G_{43} (sa snopom B_6) i G_{44} (sa snopom B_3). Svi ovi tipovi maksimalnih grafova prikazani su na Slici 96.

Slika 96. Grafovi $G_{34} - G_{44}$

13. $\theta(1,2,2)$

U ovom slučaju dobijaju se maksimalni grafovi tipa G_{45} (u kome su X-grafovi grafovi X_1 i $X_2 = X_{21} \cdot X_{22}$, sa mogućnošću da X_{21} ili X_{22} mogu biti i trivijalni), G_{46} (sa tri X-grafa), G_{47} (u kome su X grafovi X_1 , X_2 , $X_3 = X_{31} \cdot X_{32}$, $X_4 = X_{41} \cdot X_{42}$ i $X_5 = X_{51} \cdot X_{52}$, gde X_{r1} ili X_{r2} mogu biti i trivijalni za r = 3, 4, 5), G_{48} (sa snopom B_6), G_{49} (sa snopom B_3), G_{50} (sa snopom B_2), G_{51} (sa dva X-grafa), G_{52} (sa snopom B_9), G_{53} (sa snopom B_4) i G_{54} (sa snopom B_5), prikazani na Slici 97.

Slika 97. Grafovi $G_{45} - G_{54}$

Iskazaćemo teoremu čiji dokaz sledi iz dosadašnje analize.

Teorema 7.3. Ako je graf G oblika $\theta(i, j, k)$, on ima osobinu $\lambda_2 \le \sqrt{2}$ ako i samo ako je on podgraf jednog od grafova prikazanih na Slikama 93.-97. ili ako je jednak grafu $G_{30} = \theta(1, 2, 5)$.

7.2. Stabla sa osobinom
$$\lambda_2 \leq \frac{\sqrt{5}+1}{2}$$

Određivanje GRS-neodlučivih maksimalnih grafova za osobinu $\lambda_2 \leq \frac{\sqrt{5}+1}{2}$ u svim klasama u kojima je to određeno za osobinu $\lambda_2 \leq \sqrt{2}$ ovde ne može da se predstavi, zbog obimnosti rezultata. U ovom delu ograničićemo se samo na stabla i odrediti sva stabla sa osobinom $\lambda_2 \leq \frac{\sqrt{5}+1}{2}$, opisujući sva maksimalna stabla za ovu osobinu [29].

Vrednost $\frac{\sqrt{5}+1}{2}$ označavaćemo kraće sa φ , a u pitanju je veći koren kvadratne jednačine $\varphi^2 - \varphi - 1 = 0$. Za ovu vrednost jedini X-graf je P_4 , njegovi jedini pravi podgrafovi su P_1, P_2 i P_3 i to su jedina stabla za koje je $\lambda_2 < \varphi$, dok su minimalna zabranjena stabla za osobinu $\lambda_2 \le \varphi$ stabla P_5 i $K_{1,3}$ (za oba važi da im je $\lambda_2 = \sqrt{3}$). Vidimo da je za svako stablo jednostavno ustanoviti da li mu je indeks jednak φ , manji od φ , ili veći od φ . U sledećoj tabeli dajemo vrednosti $P_G(\varphi)$ (kraće: φ) za neka jednostavna stabla, a takođe (na osnovu činjenice da su sopstvene vrednosti puta P_n

oblika
$$2\cos\frac{k\pi}{n+1}$$
) važi i $P_{P_{n+5}} = -P_{P_n}$, kao i $P_{P_{n+10k}} = P_{P_n}$ $(n, k \in N)$

Tabela 26. Vrednosti P za neke grafove

G	P_{P_1}	P_{P_2}	P_{P_3}	P_{P_4}	$P_{K_{1,r}}$
P_G	φ	φ	1	0	$\varphi^{r-1}(\varphi+1-r)$

Sledećom teoremom odredićemo sva GRS-neodlučiva stabla sa osobinom $\lambda_2 \leq \varphi$.

Teorema 7.4. Ako je *T* GRS-neodlučivo stablo, onda je $\lambda_2(T) \le \varphi$ ako i samo ako je *T* podgraf nekog od stabala $T_1 - T_{59}$ (Slika 98.).

Slika 98. Stabla $T_1 - T_{59}$

Dokaz: Na Slici 98. prvo je prikazan put P_n sa oznakama čvorova, jer ćemo u svakom stablu za koje je diam = n uočiti osnovni put (jedan od puteva) dužine n, njegove čvorove posmatrati kao označene i od njega započeti analizu. Pre svega, ako je dužina puta bar 9, onda je druga sopstvena vrednost puta, pa i svakog stabla sa $diam \ge 9$, veća

od φ . Ako je diam(T) = 8 ili diam(T) = 2, stablo je GRS-odlučivo. Preostaje da izvršimo analizu za vrednosti $diam(T) \in \{3, 4, 5, 6, 7\}$.

Neka je diam(T) = 7. Pošto je stablo GRS-neodlučivo, bar jedan od čvorova v_2 , v_3 i v_4 (tj. v_5, v_6 ili v_7) osnovnog stabla P_8 mora biti dodatno opterećen. Međutim, ako se viseća grana doda na neki od čvorova v_2 , v_3 , v_6 ili v_7 , graf postaje GRS-neodlučiv (za artikulacioni čvor v_4), pa prema tome po jedna viseća grana mora da se doda na v_4 i v_5 . Pošto je za novo stablo $\lambda_2 < \varphi$, nastavljamo sa dodavanjem dozvoljenih visećih grana i dobijamo maksimalna stabla $T_1 - T_3$ (za sva tri važi $\lambda_2 = \varphi$). Proveru vrednosti karakterističnog polinoma vršimo, kao i obično, primenom Švenkovih lema ili koristeći program newGRAPH.

Neka je diam(T) = 6. Zbog GRS-neodlučivosti stabla, bar jedan od čvorova v_2 , v_3 i v_4 (tj. v_4 , v_5 i v_6) osnovnog stabla P_7 mora biti dodatno opterećen. Ako je to čvor v_2 , onda i čvor v_4 mora biti opterećen (jer ne smeju v_5 i v_6). Daljim priširivanjem dolazi se do stabala T_4 i T_5 , za koja važi $\lambda_2 = \varphi$. Neka je sad čvor v_2 stepena 2, dok je čvor v_3 dodatno opterećen. Tada, zbog GRS-neodlučivosti, čvorovi v_5 i v_6 stabla moraju takođe biti stepena 2, pa čvor v_4 mora biti dodatno opterećen. Sada ćemo diskutovati po stepenima čvorova v_3 i v_4 .

Neka je $d(v_3) = 3$ i $d(v_4) = r + 2$. Na čvor v_3 zbog veličine dijametra mora biti dodat put čija je dužina tačno 2, jer ako dodamo samo viseću granu stablo postaje GRSneodlučivo. Neka su na čvor v_4 dodate samo viseće grane. Koristeći relaciju $\varphi^2 - \varphi - 1 = 0$, dobijamo da je $P = \varphi^{r-1}(r - 2\varphi - 1)$, odkle sledi $r \le 4$. Za r = 4, novo stablo ima $\lambda_2 < \varphi$, ali nema proširenja, pa je to maksimalno stablo T_6 . Za r = 3, r = 2 i r = 1 jedina maksimalna stabla koja se dobijaju proširivanjem su T_7 , T_8 i T_9 , respektivno.

Neka su na čvorove v_3 i v_4 dodate samo viseće grane i neka je $d(v_4) = 3$ i $d(v_3) = r + 2$. Iz $P = \varphi^r(r - \varphi - 2)$ dobijamo $r \le 3$. Za r = 3 daljim proširivanjem

dolazimo samo do T_{10} ($\lambda_2 = \varphi$), a za r = 2 do T_{11} ($\lambda_2 < \varphi$), T_{12} ($\lambda_2 = \varphi$), T_{13} ($\lambda_2 = \varphi$) i T_{14} ($\lambda_2 = \varphi$).

Ako je jedini opterećeni čvor v_4 , onda on mora biti kraj mosta koji spaja osnovno stablo P_7 i drugo stablo τ čiji je indeks veći od φ . Ako je stablo τ jednako putu P_4 , ono mora biti oslonjeno u svom srednjem čvoru, zbog veličine dijametra. Dobijeno stablo ima $\lambda_2 < \varphi$ i jedina moguća ekstenzija je T_8 . Ako je τ jednako stablu $K_{1,3}$, ono mora biti oslonjeno u artikulacionom čvoru, jer u protivnom λ_2 prevazilazi φ . Ovaj slučaj dozvoljava četiri nova proširenja: $T_{15} - T_{18}$.

Neka je diam(T) = 5. Sada je osnovni put P_6 . Bar jedan od čvorova v_2 , v_3 i v_4 (tj. v_3 , v_4 i v_5) mora biti dodatno opterećen zbog GRS-neodlučivosti. Ako viseću granu oslonimo na v_2 , bar jedan od čvorova v_3 , v_4 i v_5 mora takođe biti opterećen. Ako je to čvor v_5 , dobija se maksimalni graf T_{19} . Ako je to čvor v_4 i ako je opterećen samo visećom granom, graf postaje GRS-odlučiv. Stepen čvora v_4 ne sme biti veći od 4. Ako je $d(v_4) = 4$, postoje dve moguće ekstenzije T_{20} i T_{21} . Ako je $d(v_4) = 3$, na čvor v_4 mora biti oslonjen put P_3 , što dalje daje maksimalno stablo T_{22} . Neka su sada samo v_2 i opterećeni i neka je $d(v_2) = i$ i $d(v_3) = j$. Tada je dodatno v_3 $P = \varphi^{i+j-1}((i+1)j - (j+1)(\varphi+1))$. Ako je na v_3 dodata samo viseća grana, za i = 6dobijamo maksimalno stablo T_{23} , za i = 5 proširivanjem dobijamo jedino T_{24} a za i = 4dobijaju se četiri dalja proširenja $T_{25} - T_{28}$. Za i = 3, v_3 mora biti kraj mosta čiji drugi kraj mora biti artikulacioni čvor stabla $K_{1,3}$, ali ovaj slučaj dovodi samo do stabla T_{28} . Neka je sad $d(v_2) = d(v_5) = 2$, $d(v_3) = i+2$ i $d(v_4) = j+2$. Iz $P = \varphi^{i+j}(ij-i-j-\varphi)$ sledi min $\{i, j\} \le 2$. Ako je npr. i = 1, put P_3 mora biti oslonjen na v_3 i dobijaju se proširenja $T_{29} - T_{32}$, a za i = 2, proširenja $T_{33} - T_{35}$.

Ako je jedini opterećeni čvor v_3 , kao i u prethodnim slučajevima mora postojati most, čiji je jedan kraj v_3 , a na drugi kraj oslonjeno stablo τ , koje zbog veličine dijametra mora biti stablo $K_{1,3}$, ali sva moguća proširenja dovođe do već određenih stabala. Neka je diam(T) = 4, tj. neka je osnovno stablo P_5 . Tada čvorovi v_2 i v_4 moraju biti opterećeni visećim granama. Neka je $d(v_2) = i$, $d(v_3) = 2$ i $d(v_4) = j$. Iz $P = \varphi^{i+j-3}(ij-(i+j)(\varphi+1)+3\varphi+1)$ sledi min $\{i, j\} \leq 3$. Neka je npr. $i \leq j$. Za i=3, sledi $j \leq 5$, pa se za j=5 dobija maksimalno stablo T_{36} , a za j=4 daljim proširivanjem makdimalna stabla $T_{37} - T_{40}$. Za j=3 ponovo razmatramo slučaj mosta čiji je jedan kraj v_3 , dok je na drugi naslonjeno stablo $K_{1,3}$. Ovo stablo može da se proširi jedino do stabla T_{41} . Za i=2, stepen čvora v_3 mora biti veći ili jednak 3. Za $d(v_3) = 3$, na v_3 mora biti oslonjen put P_3 . Tada važi $P = \varphi^{j-2}(j-3\varphi-3)$, pa je prema tome $j \leq 7$ i za j=7 dobija se maksimalno stablo T_{42} . Ako je $d(v_3) = k \geq 4$, iz $P = \varphi^{j+k-4}(kj-3j-2k+5+2\varphi-k\varphi)$ dobija se $j \leq 6$. Za j=6 dolazi se do maksimalnog stabla T_{43} , za j=5 stablo T_{44} , a za j=4 četiri maksimalna stabla $T_{45} - T_{48}$. Za j=3 i za j=2 mora postojati most koji povezuje v_3 sa stablom $K_{1,3}$, što dalje dovodi do maksimalnoh stabla $T_{49} - T_{57}$.

Za diam(T) = 3, na čvorove v_2 i v_3 oslanjaju se samo viseće grane. Ako je $d(v_2) = i - 2$ i $d(v_3) = j - 2$, važiće $\min\{i, j\} \ge 4$, zbog GRS-odlučivosti. Iz $P_G = \varphi^{i+j-4}((i-2)(j-2) - \varphi(i+j-4))$ sledi $\min\{i, j\} \le 5$. Neka je npr. $i \le j$. Za i = 4, važi $j \le 10$, a za i = 5, $j \le 5$, odakle se dobijaju još dva maksimalna stabla T_{58} i T_{59} .

7.3. Neke klase grafova sa osobinom $\lambda_2 \leq \sqrt{3}$

U ovom delu predstavljamo parcijalne rezultate u određivanju nekih klasa kaktusa sa osobinom $\lambda_2 \leq \sqrt{3}$. Pre svega ustanovljavamo da za vrednost $\sqrt{3}$ postoje dva odgovarajuća X-grafa i da su to P_5 i $K_{1,3}$. Pravi podgrafovi X-grafova su P_1, P_2 i P_3 , dok su minimalna zabranjena stabla za osobinu $\lambda_1 \leq \sqrt{3}$ stabla P_6 , D_5 i $K_{1,4}$. Pošto se za svako stablo različito od P_5 i $K_{1,3}$ može odrediti da li je ono pravi podgraf ili pravi nadgraf nekog od njih, jasno je da će u upoređivanju druge sopstvene vrednosti kaktusa sa $\sqrt{3}$ ponovo važnu ulogu imati odgovarajući *X*-grafovi.

U sledećoj tabeli navedene su vrednosti karakterističnog polinoma $P(\sqrt{3})$ (kraće: *P*) za neka stabla i konture sa malim dužinama.

т	1	2	3	4	5	6	7	8	9	10	11	12
P_{P_m}	$\sqrt{3}$	2	$\sqrt{3}$	1	0	-1	$-\sqrt{3}$	-2	-\sqrt{3}	-1	0	1
P_{C_m}	/	/	-2	-3	$-\sqrt{3}-2$	-4	$-\sqrt{3}-2$	-3	-2	-1	$\sqrt{3}-2$	0

Tabela 27. Vrednosti P za neke grafove

7.3.1. Neke klase stabala sa osobinom $\lambda_2 \leq \sqrt{3}$

Posmatraćemo prvo GRS-neodlučiva stabla sa osobinom $\lambda_2 \leq \sqrt{3}$. Očigledno je da put dužine 10 ima drugu sopstvenu vrednost $\sqrt{3}$ i da je to jedino stablo sa dijametrom *d* većim od 9 sa osobinom $\lambda_2 \leq \sqrt{3}$. Preostaje da se ispitaju stabla sa *diam* \in {3,...,9} (za stabla sa *diam* < 3 po GRS-teoremi važi $\lambda_2 < \sqrt{3}$). Navešćemo rezultate samo za slučajeve *diam* = 3 i *diam* = 9.

Lema 7.4. Neka je G GRS-neodlučivo stablo sa osobinom diam(G) = 3. Tada važi $\lambda_2(G) \le \sqrt{3}$ ako i samo ako je G podgraf bar jednog od stabala oblika $S_{4,12}$, $S_{5,7}$ ili $S_{6,6}$ (Slika 99.a))

Slika 99. Stabla sa dijametrom 3 i 9

Dokaz: Svako stablo za koje je diam(G) = 3 je oblika $S_{i,j}$, za $i, j \ge 1$. Zbog GRSteoreme važi uslov $i, j \ge 4$. Pošto važi $P_G = \sqrt{3}^{i+j-2}(ij-3i-3j)$, a očigledno je $\lambda_3(G) < \sqrt{3} < \lambda_1(G)$, iz uslova $P_G \le 0$ sledi da su maksimalne vrednosti za *i* i *j* date u lemi. \Box

Lema 7.5. Neka je *G* GRS-neodlučivo stablo sa osobinom diam(G) = 9. Tada važi $\lambda_2 \le \sqrt{3}$ ako i samo ako je *G* podgraf bar jednog od stabala prikazanih na Slici 100.

Slika 100. Stabla $T_1 - T_7$

Dokaz: Poći ćemo od puta dužine 9, za koji je $\lambda_2 < \sqrt{3}$ i dodavati nove grane. Primenom paketa newGRAPH ili GRS-teoreme, ustanovljavamo da je proširivanje moguće jedino u dva srednja čvora puta. Neka je svaki od njih opterećen snopom visećih grana kao na Slici 99.b). Tada važi $P_G = \sqrt{3}^{i+j-2}(ij-3)$, tj. $P_G \le 0$ (uz uslov $i \le j$) za i = 1 i $j \le 3$. Dodavanjem novih grana i proverom pomoću programa ili izračunavanjem pomoću Švenkovih lema, dolazimo do stabala $T_1 - T_7$, prikazanih na Slici 100.

Primetimo da smo rezultate mogli dobiti i primenom Teoreme 6.7. i da su svi dobijeni grafovi tipa grafova prikazanih na Slici 101. (gde su X_1 , X_2 i X_3 X-grafovi za vrednost $\sqrt{3}$), koji su α -ekvivalentni GRS-odlučivim grafovima, pri čemu grafovi sa Slike 101. obuhvataju i određene slučajeve stabala za koje je *diam* < 9. \Box

Slika 101. Stabla $T_1 - T_7$

7.3.2. Neke klase multicikličkih kaktusa sa osobinom $\lambda_2 \leq \sqrt{3}$

Kako se može pokazati da je za biciklički kaktus sa mostom $\lambda_2 \ge \sqrt{3}$, ima smisla razmotriti postojanje multicikličkih kaktusa koji ne sadrže snop kontura sa osobinom $\lambda_2 \le \sqrt{3}$, preciznije, $\lambda_2 = \sqrt{3}$. Rezultate dajemo za GRS-neodlučive multicikličke kaktuse sa *n* kontura i to za n = 2 u Teoremi 7.5., za n = 3 u Teoremi 7.6. i za $n \ge 4$ u Teoremi 7.7.

Teorema 7.5. Jedini GRS-neodlučivi biciklički kaktus koji ne sadrži snop kontura i za koji važi $\lambda_2 \le \sqrt{3}$ (a time i $\lambda_2 = \sqrt{3}$) je kaktus K_1 (Slika 102.).

Dokaz: Zbog GRS neodlučivosti, ovo mora biti kaktus s mostom. Za graf K_1 se lako može proveriti da mu je druga sopstvena vrednost jednaka $\sqrt{3}$. Takođe se jednostavno pokazuje da je za bicikličke grafove sa mostom kod kojih je dužina bar jedne konture veća od 3 druga sopstvena vrednost veća od $\sqrt{3}$. Takođe, biciklički graf K_1 se ne može ni u jednom čvoru proširiti visećom granom, a da mu λ_2 ne postane veća od $\sqrt{3}$, tako da je on maksimalan za osobinu $\lambda_2 \le \sqrt{3}$ u okviru klase bicikličkih kaktusa sa mostom. Međutim, on se može proširiti konturom. \Box

Teorema 7.6. Grafovi $K_2 - K_7$ (Slika 102.) su maksimalni GRS-neodlučivi triciklički kaktusi koji ne sadrže snop kontura i za koje važi $\lambda_2 \le \sqrt{3}$.

Dokaz: Pošto su u pitanju kaktusi bez snopa kontura, ovi grafovi moraju imati takvu cikličku strukturu da možemo reći da postoji jedna centralna i dve spoljašnje konture. Zbog prethodne teoreme, spoljašnje konture moraju biti trouglovi, a takođe i centralna kontura (graf K_1 je maksimalan u svojoj klasi i nije dozvoljeno dodavanje visećih grana). Iz istog razloga, spoljašnje konture moraju biti slobodne i ni na jedan od njihovih čvorova, pa ni na one koji su zajednički sa centralnom konturom ne može se dodati viseća grana. Zato je moguće jedino opteretiti čvor centralne konture koji ne

pripada spoljašnjim, pa se analizom stepena tog čvora (maksimalni je 6) dolazi redom do kaktusa $K_2 - K_7$. \Box

Teorema 7.7. Graf K_8 (Slika 102.) je jedini GRS-neodlučiv kaktus sa 4 (tj. bar 4) konture koji ne sadrži snop kontura i za koji važi $\lambda_2 \le \sqrt{3}$ (tj. $\lambda_2 = \sqrt{3}$).

Dokaz: Ako posmatramo dozvoljenu cikličku strukturu kaktusa sa tri konture, sa dva spoljašnja i jednim centralnim trouglom, jasno je da se nova kontura može eventualno dodati samo na onaj čvor centralne konture na koji su u prethodnoj teoremi dodavana stabla. Nova kontura mora takođe biti trougao, zbog Teoreme 7.5., a novoformirani graf ima $\lambda_2 = \sqrt{3}$ i ne može se proširiti ni u jednom čvoru.

Slika 102.

8. σ-transformacije Smitovih grafova

U dosad prikazanim rezultatima bavili smo se, između ostalog, analiziranjem položaja Smitovih grafova (tj. X^r-grafova) u refleksivnom grafu (tj. grafu sa osobinom $\lambda_2 \leq r$). Sada ćemo razmotriti pojavne oblike, tj. transformacije samih Smitovih stabala unutar nekih refleksivnih kaktusa, kao što su cepanje, cepanje nakon dodavanja viseće grane, cepanje nakon identifikovanja dva čvora Smitovog grafa, itd. Primere ovakvih transformacija daćemo u klasi refleksivnih kaktusa sa četiri konture [48]. Kako su prve dve modifikacije već opisivane u prvoj glavi, ovde ćemo više razmatrati preostale modifikacije.

8.1. Modifikacije Smitovih stabala

Opisaćemo sedam modifikacija Smitovih stabala i označiti ih sa $\sigma_1,...,\sigma_7$, a u daljem radu ćemo razmatrati proširivanje određenih tipova kaktusa pomoću ovako modifikovanih Smitovih stabala. Odgovarajuća proširenja zvaćemo σ -ekstenzije.

- σ_1 je celo Smitovo stablo
- σ_2 je Smitovo stablo podeljeno cepanjem na dva dela
- σ_3 je Smitovo stablo podeljeno cepanjem na tri dela
- σ_4 je Smitovo stablo prošireno dodatnom granom (Slika 103.)

- σ_5 je Smitovo stablo prošireno dodatnom granom, a zatim podeljeno cepanjem na dva dela u jednom od čvorova dodatne grane (Slika 103.)

- σ_6 je Smitovo stablo u kome su dva čvora *u* i *v* identifikovana (Slika 103.)

- σ_7 je Smitovo stablo u kome su dva čvora *u* i *v* identifikovana, a zatim je ono u tom čvoru podeljeno na dva dela (Slika 103.)

Slika 103. Modifikacije $\sigma_4 - \sigma_7$

O σ_1 i σ_2 ekstenziji bilo je dosta reči u prvoj glavi (Leme 1.11.-15., Slike 8.-10.), pa ćemo se sada baviti opisivanjem preostalih modifikacija: razmatraćemo σ_3 -ektenziju u delu 8.2., a ekstenzije $\sigma_4 - \sigma_7$ u delovima 8.2. i 8.3., i to u situacijama kad polazimo od određenih tricikličkih refleksivnih kaktusa i dodavanjem modifikovanih stabala dobijamo refleksivne kaktuse sa četiri konture.

8.2. σ -ekstenzije jedne familije tricikličkih kaktusa: klase T_1^- i T_2^-

U prethodnim rezultatima opisanim u prvoj glavi možemo prepoznati pojavu cepanja Smitovog stabla na tri dela (Leme 16.-17., Slike 10.-11.) u klasi T_2^- , pri čemu se pojavljuje i jedan izuzetak (Slika 10.b)). Sada ćemo date rezultate razmotriti iz aspekta σ -transformacija.

Teorema 8.1. [48] σ_3 -ekstenzije tricikličkog grafa prikazanog na Slici 31. su maksimalni refleksivni kaktusi sa četiri konture, za odgovarajući izbor artikulacionih čvorova *u* i *v* Smitovih stabala S215, S313 i S222 (Slika 1.).

Dokaz: Ako bilo koje od navedenih Smitovih stabala podelimo cepanjem na tri dela, dva od tri dobijena dela moraju biti putevi. Neka je npr. Smitovo stablo podeljeno kao što je prikazano na Slici 104. na tri dela: S_1 , put dužine *k* i put dužine *l*.

Slika 104. Cepanje Smitovog stabla na tri dela

Ako posmatramo stablo *S* sa Slike 104.a), primenjujući Švenkove leme i znajući da je $P_S = 0$, dobijamo $P_S = (k + l + 1) \left(P_{S_1 - u} - \sum_{x \in Adj(u)_{S_1}} P_{S_1 - u - x} \right) + P_{S_1 - u} = 0$. Ako ova tri dela

oslonimo na čvorove centralne konture grafa sa Slike 31., dobijamo grafG sa Slike

105., za koji važi
$$P_G = -mnp(k+l+1)\left(P_{S_1-u} - \sum_{x \in Adj(u)_{S_1}} P_{S_1-u-x}\right) + P_{S_1-u} = -mnpP_S = 0$$

Slika 105. σ_3 -ekstenzija

Ako sada potražimo sva odgovarajuća cepanja Smitovih stabala navedenih u Teoremi 8.1., dobijamo sledeće mogućnosti:

- kod stabla S215 za $u = s_3$, biće $(k,l) \in \{(1,1), (1,4), (2,3), (3,2), (4,1)\}$, za $u = s_4$, biće $(k,l) \in \{(1,3), (2,2), (3,1)\}$, za $u = s_5$, biće $(k,l) \in \{(1,2), (2,1)\}$ i za $u = s_6$, biće (k,l) = (1,1);

- kod stabla S222 za $u = s_3$, biće (k, l) = (1, 1);

- kod stabla S313 za $u = s_4$, biće $(k, l) \in \{(1, 2), (2, 1)\}$ i za $u = s_5$, biće (k, l) = (1, 1).

Na ovaj način opisani su svi grafovi sa Slike 11.

Naravno, postojala je i druga mogućnost cepanja Smitovog stabla na tri dela, kao na Slici 104.b), ali se dodavanjem ovako dobijenih delova na graf sa Slike 31. dobijaju ili ponovo grafovi sa Slike 11, ili njihovi pravi podgrafovi.□

Primetimo da smo, da se nismo ograničili na grafove sa četiri konture, mogli da razmatramo i osmu σ -modifikaciju, koja predstavlja cepanje Smitovog stabla na četiri dela. Pojavu ovakve modifikacije kod tricikličkih kaktusa videli smo u Lemi 3.8. (Slika 49.).

Posmatrajmo sada σ_4 i σ_5 -ekstenzije tricikličkog grafa sa Slike 31. Dodajući stabla tipa σ_4 , tj. σ_5 , na jedan od čvorova c_1 i c_3 grafa sa Slike 31., dobijamo redom grafove G_1 , G_2 , G_3 i G_4 (Slika 105.), koji imaju četiri konture. Uvedimo oznake $P_{S_1} = A_1$, $P_{S_2} = B_1$, $P_{s_1-v} = A$, $P_{S_2-v} = B$, $\sum_{x \in Adj(v)} P_{S_1-v-x} = \Sigma_A$, $\sum_{x \in Adj(v)} P_{S_2-v-x} = \Sigma_B$, $P_{S-u} = U_S$, $P_{S_1-v-u} = U$, $P_{S-v} = V_S$, $P_{S-u-v} = W$ i $P_{S-p} = C$, gde je *p* jedini put koji povezuje čvorove *u* i *v* u okviru odgovarajućeg Smitovog stabla. Primetimo da se iz $P_S = 0$ dobija $AB_1 - B\Sigma_A = 0$.

Slika 106. Grafovi $G_1 - G_4$

Lema 8.1. Za grafove G_i (*i* = 1, 2, 3, 4) sa Slike 106. važi $P_{G_i} = mn(-2V_S + W + 2C)$.

Dokaz: Poći ćemo od grafa G_1 i na osnovu Švenkovih lema odrediti P_{G_1} . Koristićemo pomoćne grafove H i X (Slika 107.a) i b)), pri čemu vidimo da za H važi $P_H = m(-\Sigma_A - U - 2P_{S_1-p})$.

Dobijamo:

$$P_{G_1} = 2nP_X - nmAB_1 - nBP_H - 2(n-1)P_X - 2P_X - 2nmAB = -mn(AB_1 + BP_H + 2AB) = mn(-2V_S + W + 2C).$$

Slika 107. Pomoćni grafovi

Kod grafa G_2 koristićemo pomoćne grafove H_1 i X_1 (Slika107.c) i d)), kao i $P_{H_1} = -m(\Sigma_A B + \Sigma_B A + UB + 2C)$ i dobićemo:

$$P_{G_1} = 2nP_{X_1} - 2(n-1)P_{X_1} - 2nmAB - nP_{X_1} - 2P_{X_1} - 2mnAB$$

= $-mn(2AB + UB + 2C) = mn(-2V_s + W + 2C).$

Slično, za G_3 važi $P_{G_3} = mn(W + 2C - 2AB) = mn(-2V_s + W + 2C)$, dok za G_4 važi $P_{G_4} = -nmB(A_1 - U - 2P_{S_1 - p}) + mn\Sigma_B A - 2mnAB = mn(-2V_s + W + 2C)$. \Box

Naravno vrednost izraza $-2V_s + W + 2C$ zavisi od izbora čvorova u i v. Sada ćemo analizirati sva Smitova stabla i ustanoviti za koje slučajeve je $-2V_s + W + 2C = 0$, ali prvo jednim primerom pokazujemo kako ćemo primeniti dobijene rezultate. Posmatrajmo npr. Smitovo stablo S215 (Slika 107.) sa dodatnom granom koja povezuje u i v ($u = s_9, v = s_4$).

Slika 108. Modifikacije Smitovog stabla S215

Tada je $V_s = 25$, W = 20 i C = 15, pa je $-2V_s + W + 2C = 0$. Grafovi tipa G_1 , G_2 , G_3 i G_4 (Slika 108.) dobijeni primenom ovakvih ekstenzija su maksimalni grafovi iz familija $K_1 - K_{36}$ i $N_1 - N_{42}$.

Slika 109. Primena ekstenzija

U slučaju stabla S215, $-2V_s + W + 2C = 0$ važi ako i samo ako važi $(u,v) \in \{(s_1,s_5), (s_8,s_1), (s_7,s_3), (s_7,s_4), (s_9,s_4)(s_7,s_5)\}$. U sledećoj tabeli prikazujemo grafove koji odgovaraju svakom navedenom paru čvorova.

(s_1, s_5)	J_7, J_8, M_{11}, M_4
(s_8, s_1)	J_2, M_7
(s_7, s_3)	$K_{20}, K_{21}, K_{33}, K_{34}, N_{20}, N_{21}, N_{33}, N_{34}$
(s_7, s_4)	$K_{27}, K_{28}, N_{27}, N_{28}$
(s_{9}, s_{4})	$K_{7}, K_{8}, N_{7}, N_{8}$
(s_7, s_5)	$K_{25}, K_{26}, N_{25}, N_{26}$

Tabela 28. Stablo S215

U slučaju stabla S313, $-2V_s + W + 2C = 0$ važi ako i samo ako važi $(u,v) \in \{(s_1,s_6), (s_2,s_4)\}$ i odgovarajuće grafove prikazujemo u Tabeli 29. Napominjemo da se u grafu K_3 pojavljuje stablo S313 za $(u,v) = (s_1,s_8)$, ali da pri tome $-2V_s + W + 2C \neq 0$, tj. $\lambda_2(K_3) < 2$.

Tabela 29. Stablo S313

(s_1, s_6)	J_9, J_{10}, M_{12}			
(s_2, s_4)	$K_{16}, K_{17}, K_{29}, K_{30}, N_{16}, N_{17}, N_{29}, N_{30}$			

Za stabla S222 i S1111 ne postoje odgovarajući parovi (u, v) za koje važi $-2V_s + W + 2C = 0$, a za graf W_n uslov $-2V_s + W + 2C = 0$ važi samo za $(u,v) = (a_1,c_2)$, gde za n = 2 dobijamo grafove J_{14} i M_9 , a za n > 2 grafove $J_5, J_6,$ M_{10} i podgraf maksimalnog grafa M_2 .

Prema tome, važi sledeća teorema.

Teorema 8.2. σ_4 i σ_5 -ekstenzije grafa sa Slike 31. predstavljaju maksimalne refleksivne kaktuse sa četiri konture.

8.3. σ -ekstenzije jedne klase tricikličkih kaktusa: klase Q_1^- i Q_2^-

Sada posmatramo $\sigma_4 - \sigma_7$ ekstenzije tricikličkog kaktusa sa Slike 110.a). Kao i malopre, prvo ćemo pokazaćemo jedan primer (Slika 110.), a zatim iskazati tvrđenja. Polazeći od stabla S215, vršimo identifikaciju čvorova s_6 i s_9 , a zatim cepanje u čvoru $s_6 = s_9$. Dobijene delove oslanjamo na dva čvora koji ne pripadaju spoljašnjim konturama grafa sa Slike 110.a) i dobijamo graf H_{16} .

Slika 110. Primer za σ_4 i σ_5

Lema 8.2. Za sve grafove tipa G_i sa Slike 111. važi $P_{G_i} = 0$ (i = 1, 2, 3, 4).

Dokaz: Primenom Švenkovih lema dobija se da je $P_{G_i} = 0$, za i = 1, 2, 3, 4.

Slika 111. Grafovi $G_1 - G_4$

Teorema 8.3. Primenom $\sigma_4 - \sigma_7$ ekstenzija tricikličkog kaktusa sa Slike 110.a) dobijaju se maksimalni refleksivni kaktusi sa četiri konture.

Dokaz: Proverom svih slučajeva dobijamo rezultat.

Napomenimo da za većinu maksimalnih refleksivnih kaktusa iz familije $H_1 - H_{48}$ možemo reći da su:

- tipa $G_1(H_1, H_5, H_7, H_9, H_{11}, H_{30}, H_{32}, H_{33}, H_{35}, H_{36}, H_{38})$
- tipa G_2 $(H_3, H_{10}, H_{14}, H_{16}, H_{18}, H_{23}, H_{42} H_{45}, H_{48})$
- tipa $G_3 (H_2, H_4, H_{12}, H_{19}, H_{31}, H_{35}, H_{37}, H_{39}, H_{41})$
- tipa G_4 $(H_6, H_8, H_{13}, H_{24} H_{26}, H_{29}, H_{46}, H_{47}).$

Za preostale grafove iz ove familije vidimo da su ili nadgrafovi nekog od grafova tipa G_1 dobijeni dodavanjem viseće grane $(H_{15}, H_{20} - H_{22}, H_{34})$, ili podgrafovi koji su dobijeni odstranjivanjem viseće grane iz nekog od grafova tipa G_3 (H_{17}, H_{40}) ili G_4 (H_{27}, H_{28}) .

Zaključak

Rezultati ovog rada su se pre svega nadovezali na dosadašnje rezultate iz oblasti refleksivnih grafova. Kako su prethodno opisane sve klase RS-neodlučivih refleksivnih kaktusa koji ne sadrže snop kontura, sa 4 i 5 kontura (npr. [42],[46]) i dati parcijalni rezultati za tricikličke refleksivne kaktuse sa istim osobinama, osim za klasu R_4 koja je u potpunosti opisana [46], ovde su u potpunosti opisane klase R_1 i R_3 i dati parcijalni rezultati za klasu R_2 . Međutim, u 2. i 3. glavi razvijen je instrument koji omogućava opisivanje preostalih maksimalnih kaktusa iz klase R_2 . Takođe, ovde su prvi put RS-neodlučivi refleksivni kaktusi, i to biciklički kaktusi sa mostom i triciklički kaktusi klase R_3 , opisani pomoću minimalnih zabranjenih grafova za ovu osobinu.

Opisivanje RS-neodlučivih refleksivnih kaktusa koji sadrže snop kontura zbog obimnosti predstavlja veliki problem. U ovom radu su dati doprinosi u pogledu određivanja maksimalnog broja kontura koje taj snop može da sadrži.

Uopštenje RS-teoreme i uopštenja tvrđenja koja se odnose na preslikavanja iz druge glave, kao i druga tvrđenja data u šestoj glavi, otvorila su mogućnost za istraživanje novih klasa grafova koji ne moraju biti kaktusi i koji ne moraju biti refleksivni, nego imaju osobinu $\lambda_2 \leq r$, gde je r > 0.

Ove mogućnosti iskorišćene su u izvesnoj meri u sedmoj glavi, gde su opisani svi uniciklički i multiciklički kaktusi sa osobinom $\lambda_2 \leq \sqrt{2}$, kao i svi θ -grafovi sa ovom osobinom, zatim sva stabla sa osobinom $\lambda_2 \leq \frac{\sqrt{5}+1}{2}$, kao i izvesna stabla (uz ograničenje dijametra) i svi multiciklički kaktusi bez snopa kontura sa osobinom $\lambda_2 \leq \sqrt{3}$. Naravno, ovde je u svim slučajevima reč samo o GRS-neodlučivim grafovima. U osmoj glavi uloga Smitovih stabala opisana je iz drugog ugla, pomoću njihovih σ modifikacija. σ -ekstenzije u osmoj glavi primenjene su samo u cilju dobijanja maksimalnih refleksivnih RS-neodlučivih kaktusa sa 4 konture.

Nova istraživanja bi mogla ići u pravcu:

- kompletiranja rezultata koji se tiču klase R_3 ,

- opisivanja još nekih klasa refleksivnih kaktusa pomoću minimalnih zabranjenih grafova,

- opisivanja nekih klasa RS-neodlučivih refleksivnih kaktusa koji sadrže snop kontura, uz određena ograničenja, na osnovu tabela datih uz petu glavu,

ispitivanja osobina preslikavanja iz šeste glave i pronalaženje sličnih za razne klase grafova,

- uopštavanje rezultata za određene klase grafova na osnovu prethodnih preslikavanja,

- opisivanja novih klasa grafova u kojima je druga sopstvena vrednost ograničena sa

$$\sqrt{2}$$
, $\frac{\sqrt{5}+1}{2}$ i $\sqrt{3}$,

 pronalaženja novih pogodnih ograničenja za drugu sopstvenu vrednost i opisivanje odgovarajućih klasa grafova,

- pronalaženja novih σ - modifikacija Smitovih stabala,

- primenjivanja σ -ekstenzija na razne klase bicikličkih ili unicikličkih kaktusa radi boljeg sagledavanja poznatih, kao i dobijanja novih rezultata,

- uopštavanja σ -modifikacija u smislu modifikacija X-grafova i primenjivanja odgovarajućih uopštenih σ -ekstenzija itd.

Nadamo se da će naša razmatranja doprineti novim naučnim rezultatima.

Literatura

- V. Brankov, D. Stevanović: An Invitation to newGRAPH; Rendiconti del Seminario Matematico di Messina, Serie II, Tomo XXV, Volume 9 (2003), 211-216.
- [2] D. Cao, Y. Hong: Graphs characterized by the second eigenvalue; J. Graph Theory, 17(1993), No. 3, 325-331.
- [3] D. Cvetković: On graphs whose second largest eigenvalue does not exceed 1;
 Publ. Inst. Math. (Beograd), 31(45)(1982), 15-20.
- [4] D. Cvetković: *Teorija grafova i njene primene*; V izdanje, Naučna knjiga, Beograd, 1990.
- [5] D. Cvetković, M. Doob, I. Gutman, A. Torgašev: *Recent results in the theory of graph spectra*; (Annals of discrete math. 36), North-Holland, Amsterdam-New York-Oxford-Tokyo, 1988.
- [6] D. Cvetković, M. Doob, H. Sachs: Spectra of Graphs--Theory and Application; Deutscher Verlag der Wissenschaften-Academic Press, Berlin-New York, 1980; second edition 1982; third edition, Johann Ambrosius Barth Verlag, Heidelberg-Leipzig, 1995.
- [7] D. Cvetković, M. Doob, S. Simić: Some results on generalized line graphs; C. R. Math. Rept. Acad. Sci. Canada, 2(1980), No.3, 147-151.
- [8] D. Cvetković, M. Doob, S. Simić: *Generalized line graphs*; J. Graph Theory, 5(1981), No.4, 385-399.
- [9] D. Cvetković, L. Kraus, S. Simić: *Discussing graph theory with a computer I*, Implementation of algorithms. Univ. Beograd, Publ. Elektrotehn. Fak., Ser. Mat. Fiz. No.716 -No.734 (1981), 100-104.
- [10] D. Cvetković, M. Petrić: A table of connected graphs on six vertices; Discrete Math. 50(1984), No. 1, 37-49.
- [11] D. Cvetković, S. Simić: On graphs whose second largest eigenvalue does not exceed $(\sqrt{5}-1)/2$; Discrete Math., 138(1995), 213-227.

- [12] D. Cvetković, S. Simić: *The second largest eigenvalue of a graph-A survey*.
 FILOMAT (Niš), 9:3 (1995), Proc.Conf. on Algebra, Logic and Discrete Math., Niš, 14-16 April 1995, 449-472.
- [13] Handbook of Graph Theory, Edited by Jonatan L. Gross, Jay Yellen; Discrete Mathematics and its Applications, Series Editor Keneth H. Rosen, CRC PRESS, Boca Raton, London, New York, Washington D. C., 2004.
- [14] F. Harary: Graph theory. Addison-Wesley Publishing Company, Reading, Massachusetts, 1969.
- [15] L. Howes: On subdominantly bounded graphs summary of results; Recent Trends in Graph Theory, Proc. of the First New York City Graph Theory Conf. (Jun.11-13, 1970, Capobianco M., Frechen J.B., Krolik M.), Springer-Verlag, Berlin, 1971, 181-183.
- [16] M. Gao, H. Qiongxiang: On generalized θ-graphs whose second largest eigenvalue does not exceed 1; Discrete Math., Vol. 308/1 (2008), 5849-5855.
- [17] S.G. Guo: On bicyclic graphs whose second largest eigenvalue does not exceed 1; Linear Algebra Appl. 407 (2005) 201-210.
- [18] T. Koledin: Regular graphs with girth at least 5 and small second largest eigenvalue; Linear Algebra Appl. 439 (5) (2013), 1229-1244.
- [19] T. Koledin, Z. Radosavljević: Unicyclic reflexive graphs with 7 loaded vertices of the cycle; Filomat 23:3 (2009), 257-268.
- [20] T. Koledin, Z. Stanić: Regular graphs whose second largest eigenvalue is at most *I*; Novi Sad J. Math., 43 (3) (2013) 145-153.
- [21] T. Koledin, Z. Stanić: *Regular graphs with small second largest eigenvalue*; Appl. Anal. Discrete Math., 7 (2013) 235-249.
- [22] T. Koledin, Z. Stanić: Regular bipartite graphs with three distinct non-negative eigenvalues; Linear Algebra Appl., 438 (2013) 3336-3349.
- [23] T. Koledin, Z. Stanić: *Reflexive bipartite regular graphs*; Linear Algebra Appl., 442 (2014) 145-155.
- [24] J. Li: *Ph D Thesis*; University of Manitoba, 1994.
- [25] S. Li, H. Yang: On tricyclic graphs whose second largest eigenvalue does not exceed 1; Linear Algebra Appl., 434 (2011) 2211-2221.
- [26] G. Maxwell: *Hypebolic trees*; J. Algebra 54 (1978), 46-49.

- [27] M. Milatović, Z. Stanić: The nested split graphs whose second largest eigenvalue isequal to 1; Novi Sad J. Math. 42 (2) (2012) 33-42.
- [28] B. Mihailović: Neke klase bicikličkih i unicikličkih grafova čija druga sopstvena vrednost nije veća od √3; Zbornik radova, XXXVIII Simpozijum o operacionim istraživanjima SYMOPIS 2011, Zlatibor, 4-7. okt. 2011., 246-249.
- [29] B. Mihailović: Trees whose second largest eigenvalue does not exceed (sqrt5+1)/2; Scientific Publications of The State University of Novi Pazar, Ser.A: Appl.Math.Inform.and Mech. Vol.6,2 (2014), 119-129.
- [30] B. Mihailović, Z. Radosavljević: On a class of tricyclic reflexive cactuses; Univ. Beograd, Publ. Elektrotehn. Fak., Ser. Mat. 16 (2005), 55-63.
- [31] A. Neumaier: *The second largest eigenvalue of a tree*; Linear Algebra Appl., 46 (1982), 9-25.
- [32] A. Neumaier, J. J. Seidel: *Discrete hyperbolic geometry*. Combinatorica, 3 (2) (1983), 219-237.
- [33] M. Petrović: On graphs with exactly one eigenvalue less than −1; J. Comb. Theory B 52(1991), No.1, 102-112
- [34] M. Petrović: On graphs whose second largest eigenvalue does not exceed $\sqrt{2}-1$; Univ. Beograd, Publ. Elektrotehn. Fak., Ser. Mat. 4 (1993), 64-85.
- [35] M. Petrović, B. Milekić: On the second largest eigenvalue of line graphs; J. Graph Theory 27(1998), 61-66.
- [36] M. Petrović, B. Milekić: *Generalized line graphs with the second largest eigenvalue at most 1*; Publ. Inst. Math. (Beograd), 68(82) (2000), 37-45.
- [37] M. Petrović, Z. Radosavljević: *Spectrally constrained graphs*; Fac. of Science, Kragujevac, Yugoslavia, 2001.
- [38] Z. Radosavljević: *On unicyclic reflexive graphs*; Applicable Analysis and Discrete Mathematics, 1 (2007), 228-240.
- [39] Z. Radosavljević, B. Mihailović, M. Rašajski: Decomposition of Smith graphs in maximal reflexive cactuses; Discrete Math., Vol. 308/2-3 (2008), 355-366.
- [40] Z. Radosavljević, B. Mihailović, M. Rašajski: On bicyclic reflexive graphs; Discrete Math., Vol. 308/5-6 (2008), 715-725.
- [41] Z. Radosavljević, M. Rašajski: A class of reflexive cactuses with four cycles; Univ. Beograd, Publ. Elektrotehn. Fak., Ser. Mat. 14 (2003), 64-85.

- [42] Z. Radosavljević, M. Rašajski: *Multicyclic treelike reflexive graphs*; Discrete Math., Vol. 296/1 (2005), 43-57.
- [43] Z. Radosavljević, M. Rašajski: *O nekim klasama višekonturnih stablolikih refleksivnih grafova*; Zbornik radova, XXX Simpozijum o operacionim istraživanjima SYMOPIS 2003 (Ur. N. Mladenović, Dj. Dugošija), Herceg Novi, Sept. 30-Okt.3, 2003., 295-298.
- [44] Z. Radosavljević, S. Simić: *Which bicyclic graphs are reflexive?*; Univ. Beograd, Publ. Elektrotehn. Fak., Ser. Mat. 7 (1996), 90-104.
- [45] M. Rašajski: O jednoj klasi tricikličkih stablolikih refleksivnih grafova, Zbornik radova, XXXIII Simpozijum o operacionim istraživanjima SYMOPIS 2006, Banja Koviljača, Okt. 3-6, 2006., 225-228
- [46] M. Rašajski: Višekonturni refleksivni grafovi; Doktorska disertacija, Matematički fakultet., Beograd 2006.
- [47] M. Rašajski, Z. Radosavljević, B. Mihailović: Konstrukcija jedne klase maksimalnih refleksivnih θ-grafova pomoću Smitovih grafova, Zbornik radova, XXXIII Simpozijum o operacionim istraživanjima SYMOPIS 2006, Banja Koviljača, Oct. 3-6, 2006., 217-220.
- [48] M. Rašajski, Z. Radosavljević, B. Mihailović: Maximal reflexive cacti with four cycles: The approach via Smith graphs; Linear Algebra Appl., 435 (10) (2011) 2530-2543.
- [49] M. Rašajski, Z. Radosavljević, B. Mihailović: σ-proširenja u nekim klasama maksimalnih refleksivnih kaktusa; Zbornik radova, XXXVIII Simpozijum o operacionim istraživanjima SYMOPIS 2011, Zlatibor, 4-7. okt. 2011., 254-257.
- [50] J. Schwenk: Computing the characteristic polynomial of a graph. In: Graphs and Combinatorics (Lecture Notes in Math. 406, ed. R. Bari, F. Harary), Springer-Verlag, Berlin-Heidelberg-New York, 1974, 153-172.
- [51] S. Simić: Some notes on graphs whose second largest eigenvalue is less than $(\sqrt{5}-1)/2$, Linear and Multilinear Algebra, 39(1995), 59-71.
- [52] J. H. Smith: Some properties of the spectrum of a graph. In: Combinatorial Structures and Their Applications. Ed. R. Guy, H. Hanani, N. Sauer, J. Schonheim. Gordon and Breach, Science Publ., Inc., New York-London-Paris 1970, 403-406.
- [53] Z. Stanić: On graphs whose second largest eigenvalue equals 1 the star complement technique; Linear Algebra Appl., 420 (2007) 700-710
- [54] Z. Stanić: Some star complements for the second largest eigenvalue of a graph; Ars Math. Contemp., 1(2008), 126-136.
- [55] Z. Stanić: On nested split graphs whose second largest eigenvalue is less than 1; Linear Algebra Appl., 430 (2009), 2200-2211.
- [56] Z. Stanić: On regular graphs and coronas whose second largest eigenvalue does not exceed 1; Linear Multilinear Algebra, 58 (5) (2010), 545-554.
- [57] Z. Stanić: Some graphs whose second largest eigenvalue does not exceed $\sqrt{2}$; Linear Algebra Appl., 437 (2012) 1812-1820.
- [58] G. H. Xu: On unicyclic graphs whose second largest eigenvalue does not exceed*I*; Discrete Applied Mathematics 136 (2004) 117-124

Prilog I - Slike

Slika 2. Grafovi $B_1 - B_{11}$

Slika 3. Grafovi $C_1 - C_{41}$

Slika 4. Grafovi $D_1 - D_{36}$

H39

0

Slika 5. Grafovi $H_1 - H_{48}$

Slika 6. Grafovi $I_1 - I_9$

Slika 7. Grafovi $J_1 - J_{11}$

Slika 8. Grafovi $K_1 - K_{36}$

Slika 9. Grafovi $L_1 - L_{12}$

Slika 10. Grafovi $M_1 - M_{12}$

Slika 11. Grafovi $N_1 - N_{42}$

Prilog II D3 - dodatak trećoj glavi

Tabela 1. $Q_r = \hat{A}_n^{i+1} \cdot X_r$

r	39		4	0-43					44-53	
i	6			5					4	
n	13	13	12	11	15	14	13	12	11	10
X _r	A_2^1	A_2^1	A_4^1	D_k^1 , $A_2^1\cdot A_2^1$	A_2^1	A_3^1	A_4^1	A_{13}^{1}	$egin{array}{l} D_k^1,\ A_2^1\cdot A_2^1 \end{array}$	$E_6^1, D_5^5, D_k^1, \ A_4^1 \cdot A_2^1$

Tabela 1.1. $Q_{39} - Q_{53}$

Tabela 1.2. $Q_{54} - Q_{73}$

r	54-62				63-73	5				
i	4				3					
n	9	31	23	20	19	18	17	16	15	12
X_r	$E_6^6, E_7^6, E_8^1, E_7^1, D_8^8, D_k^1 \cdot A_2^1, \\ A_4^1 \cdot A_4^1, A_6^1 \cdot A_3^1, A_2^1 \cdot A_2^1 \cdot A_2^1 \cdot A_2^1$	A_2^1	A_3^1	A_4^1	A_5^1	A_6^1	A_{9}^{1}	A_{17}^{1}	$egin{array}{c} D_k^1,\ A_2^1\cdot A_2^1 \end{array}$	$D_5^5,\ A_3^1\cdot A_2^1$

Tabela 1.3. $Q_{74} - Q_{102}$

r			74-102	
i			3	
n	11	10	9	8
X _r	$E_7^1, E_6^1, D_6^6, \ A_3^1 \cdot A_3^1, A_6^1 \cdot A_2^1$	$D_7^7, A_4^1 \cdot A_3^1, \ A_{22}^1 \cdot A_2^1$	$ \begin{array}{c} E_6^6, E_7^6, E_8^1, D_{10}^{10}, D_k^1 \cdot A_2^1, \\ A_5^1 \cdot A_5^1, A_6^1 \cdot A_{14}^1, A_{15}^1 \cdot A_3^1, \\ A_2^1 \cdot A_2^1 \cdot A_2^1 \end{array} $	$E_7^7, E_8^7, E_6^1 \cdot A_2^1, D_{18}^{18}, D_5^5 \cdot A_2^1, \\D_k^1 \cdot A_4^1, A_9^1 \cdot A_9^1, A_{10}^1 \cdot A_8^1, A_{12}^1 \cdot A_7^1, \\A_{18}^1 \cdot A_6^1, A_{45}^1 \cdot A_5^1, A_4^1 \cdot A_2^1 \cdot A_2^1$

Tabela 1.4. $Q_{103} - Q_{116}$

r								103-116						
i								2						
п	9	11	17	11	17	17	26	9	35	11	44	26	20	17
X_r	E_{8}^{8}	E_{7}^{7}	E_{6}^{6}	E_{8}^{7}	E_{7}^{6}	E_8^1	E_{7}^{1}	$E_7^1 \cdot A_2^1$	E_6^1	$E_6^1 \cdot A_2^1$	D_{5}^{5}	D_6^6	D_{7}^{7}	D_8^8

Tabela 1.5. $Q_{117} - Q_{126}$

r						117-126		
i						2		
п	15	14	13	12	11	10	9	11
X_r	D_{9}^{9}	D_{10}^{10}	D_{11}^{11}	D_{12}^{12}	D_{16}^{16}	D_{22}^{22}	$D_{40}^{40}, D_6^6 \cdot A_2^1, D_5^5 \cdot A_3^1$	$D_5^5 \cdot A_2^1$

Tabela 1.6. $Q_{127} - Q_{131}$

r			127-131		
i			2		
n	17	12	11	10	9
X_r	$D_k^1 \cdot A_2^1$	$D_k^1 \cdot A_3^1$	$D_k^1 \cdot A_4^1$	$D_k^1 \cdot A_5^1$	$D_k^1 \cdot A_{10}^1$

Tabela 1.7. $Q_{132} - Q_{150}$

r									13	2-150									
n						9							1	0				11	
k	20	21	22	24	26	30	35	43	60	110	10	12	14	17	25	66	8	9	12
l	20	19	18	17	16	15	14	13	12	11	11	10	9	8	7	6	8	7	6

Tabela 1.8. $Q_{151} - Q_{171}$

r											151-	-171									
n	11		12			13			14		1	5	16	1	7	26	20	18	18	19	20
k	20	7	9	17	6	9	42	5	6	15	5	9	7	4	6	3	4	5	38	20	14
l	5 6 5 4 5 4 3 5 4 3 4 3 4 3 2																				

Tabela 1.9. $Q_{172} - Q_{179}$

Tabela 1.10. $Q_{180} - Q_{185}$

r	172	-179						
п	21	22	23	24	26	29	35	53
k	11	9	8	7	6	5	4	3
l	2							

r	18	0-185	5			
п	9	9	10	11	12	17
k	3	10	5	4	3	2
l	3	2				
р	2					

Tabela 2: P, \overline{P} , c i c za $E_x^y \cdot E_z^t$

$\begin{array}{c c} P & c \\ \hline \overline{P} & c' \end{array}$	E	8 8	E	7 (7	E	6 6	E	7 8	E	6 7	E	1 8	E	1 7	E	6
<i>F</i> ⁸	-112	16	-89	23	-66	30	-52	12	-44	20	-22	10	-29	19	-36	28
L_8	64	-32	56	-10	48	12	32	-8	32	8	16	4	24	14	32	24
F^7			-70	28	-51	33	-41	15	-34	20	-15	11	-22	20	-27	29
L_7			49	7	42	24	28	2	28	8	13	8	21	19	28	30
F^6					-36	36	-30	18	-24	22	-12	12	-15	21	-18	30
L_6					36	36	24	12	24	16	12	12	18	24	24	36
F^7							-24	8	-20	24	-10	6	-13	11	-16	16
L_8							16	0	16	24	8	4	12	10	16	16
F^6									-16	12	-8	8	-10	14	-12	20
L_7									16	8	8	8	12	16	16	24
F^1											-4	4	-5	7	-6	10
L ₈											4	4	6	8	8	12
F^1													-6	12	-7	17
<i>L</i> ₇													9	15	12	22
F^1															-8	24
<i>L</i> ₆															16	32

Tabela 3: *P*, \overline{P} i *c'* za $E_x^y \cdot E_z^t \cdot X$

	С	\overline{P}	<i>c</i> ′
$E_8^8\cdot E_7^1\cdot A_k^1$	24 - 5k	24 <i>k</i>	48 - 34k
$E_8^8\cdot E_6^1\cdot A_k^1$	32 - 4k	32 <i>k</i>	64 - 40k
$E_7^7 \cdot E_7^7 \cdot A_k^1$	49 - 21k	49 <i>k</i>	98 - 70k
$E_7^7 \cdot E_6^6 \cdot A_k^1$	42 - 9k	42 <i>k</i>	84-60k
$E_7^7 \cdot E_8^7 \cdot A_k^1$	28 - 13k	28 <i>k</i>	56–54 <i>k</i>
$E_7^7 \cdot E_7^6 \cdot A_k^1$	28 - 6k	28 <i>k</i>	56 - 40k
$E_7^7 \cdot E_8^1 \cdot A_k^1$	14 - 3k	14 <i>k</i>	28 - 20k
$E_7^7 \cdot E_7^1 \cdot A_k^1$	21- <i>k</i>	21 <i>k</i>	42 - 23k
$E_7^7 \cdot E_6^1 \cdot D_k^1$	4	112	-220
$E_7^7 \cdot E_7^7 \cdot A_k^1$	49 - 21k	49 <i>k</i>	98 - 70k
$E_7^7 \cdot E_6^6 \cdot A_k^1$	42 - 9k	42 <i>k</i>	84-60k
$E_7^7 \cdot E_8^7 \cdot A_k^1$	28 - 13k	28 <i>k</i>	56–54 <i>k</i>
$E_6^6 \cdot E_6^6 \cdot D_k^1$	0	144	-288
$E_6^6 \cdot E_6^6 \cdot A_k^1 \cdot A_l^1$	36(-kl+k+l)	36 <i>kl</i>	36(-3kl+2k+2l)
$E_6^6 \cdot E_8^7 \cdot A_k^1$	24 - 6k	24 <i>k</i>	48-36k
$\overline{E_6^6 \cdot E_7^6 \cdot D_k^1}$	0	96	-192

$E_6^6 \cdot E_7^6 \cdot A_k^1 \cdot A_l^1$	24(-kl+k+l)	24 <i>kl</i>	24(-3kl+2k+2l)
$E_6^6 \cdot E_8^1 \cdot D_k^1$	0	48	-96
$E_6^6 \cdot E_8^1 \cdot A_k^1 \cdot A_l^1$	12(-kl+k+l)	12 <i>kl</i>	12(-3kl+2k+2l)
$E_6^6 \cdot E_7^1 \cdot D_k^1$	12	72	-48
$E_6^6 \cdot E_7^1 \cdot A_k^1 \cdot A_l^1$	3(-5kl+6k+6l)	36 <i>kl</i>	6(-11kl+6k+6l)
$E_{6}^{6} \cdot E_{6}^{1} \cdot E_{6}^{1}$	0	96	-192
$E_6^6 \cdot E_6^1 \cdot D_k^k$	96–18k	24 <i>k</i>	192 - 60k
$E_6^6\cdot E_6^1\cdot D_k^1$	24	96	-48
$E_6^6 \cdot E_6^1 \cdot A_k^1 \cdot A_l^1$	6(-3kl+4k+4l)	24 <i>kl</i>	12(-5kl+4k+4l)
$E_7^6\cdot E_7^6\cdot D_k^1$	0	64	-128
$E_7^6 \cdot E_7^6 \cdot A_k^1 \cdot A_l^1$	16(-kl+k+l)	16 <i>kl</i>	16(-3kl+2k+2l)
$E_7^6\cdot E_8^1\cdot D_k^1$	0	32	-64
$E_7^6 \cdot E_8^1 \cdot A_k^1 \cdot A_l^1$	8(-kl+k+l)	8kl	8(-3kl+2k+2l)
$E_7^6\cdot E_7^1\cdot D_k^1$	8	48	-32
$E_7^6 \cdot E_7^1 \cdot A_k^1 \cdot A_l^1$	2(-5kl+6k+6l)	12 <i>kl</i>	8(-4kl+3k+3l)
$E_7^6 \cdot E_6^1 \cdot E_6^1$	0	64	-128
$E_7^6 \cdot E_6^1 \cdot D_k^k$	64 - 12k	16 <i>k</i>	128 - 40k
$E_7^6 \cdot E_6^1 \cdot D_k^1$	16	64	-96
$E_7^6 \cdot E_6^1 \cdot A_k^1 \cdot A_l^1$	4(-3kl+4k+4l)	16 <i>kl</i>	8(-5kl+4k+4l)
$E_8^1\cdot E_8^1\cdot D_k^1$	0	16	-32
$E_8^1 \cdot E_8^1 \cdot A_k^1 \cdot A_l^1$	4(-kl+k+l)	4 <i>kl</i>	4(-3kl+2k+2l)
$E_8^1 \cdot E_7^1 \cdot D_k^1$	4	24	-40
$E_8^1 \cdot E_7^1 \cdot A_k^1 \cdot A_l^1$	-5kl+6k+6l	6kl	4(-4kl+3k+3l)
$E_{8}^{1} \cdot E_{6}^{1} \cdot E_{6}^{1}$	0	32	-64
$E_8^1 \cdot E_6^1 \cdot D_k^k$	32-6k	8 <i>k</i>	64 - 20k
$E_8^1 \cdot E_6^1 \cdot D_k^1$	8	32	-16
$E_8^1 \cdot E_6^1 \cdot A_k^1 \cdot A_l^1$	2(-3kl+4k+4l)	8kl	4(-5kl+4k+4l)
$E_7^1\cdot E_7^1\cdot E_7^1$	0	18	-18
$E_7^1\cdot E_7^1\cdot E_6^1$	3	36	-30
$E_7^1 \cdot E_7^1 \cdot D_k^k$	36–6 <i>k</i>	9 <i>k</i>	72 - 21k
$E_7^1 \cdot E_7^1 \cdot D_k^1$	12	36	-12
$E_7^1 \cdot \overline{E_7^1} \cdot \overline{A_k^1} \cdot \overline{A_l^1}$	3(-2kl+3k+3l)	9 <i>kl</i>	3(-7kl+6k+6l)
$E_{7}^{1} \cdot E_{6}^{1} \cdot E_{6}^{1}$	8	48	-32
$E_7^1 \cdot \overline{E_6^1 \cdot D_k^k}$	48 - 7k	48	48 - 14k

$E_7^1 \cdot E_6^1 \cdot D_k^1$	20	48	-8
$E_7^1 \cdot E_6^1 \cdot A_k^1 \cdot A_l^1$	-7kl + 12k + 12l	12 <i>kl</i>	-26kl + 24k + 24l
$E_{6}^{1} \cdot E_{6}^{1} \cdot E_{6}^{1}$	16	64	-32
$E_6^1 \cdot E_6^1 \cdot D_k^k$	64 - 8k	16 <i>k</i>	128 - 32k
$E_6^1 \cdot E_6^1 \cdot D_k^1$	32	64	0
$E_6^1 \cdot E_6^1 \cdot A_k^1 \cdot A_l^1$	8(-kl+2k+2l)	16 <i>kl</i>	32(-kl+k+l)

Tabela 4: P i \overline{P} za $E_x^y \cdot X$ ($X \in \{D_n^n, D_n^1, A_n^1\}$)

	•	E_{8}^{8}	E_{7}^{7}	E_{6}^{6}	E_{8}^{7}	E_{7}^{6}	E_8^1	E_7^1	E_6^1
	Р	32-15 <i>n</i>	28-12 <i>n</i>	24-9n	16-7 <i>n</i>	16-6 <i>n</i>	8-3 <i>n</i>	12-4 <i>n</i>	16-5 <i>n</i>
D_n^n	\overline{P}	8 <i>n</i>	7 <i>n</i>	6 <i>n</i>	4 <i>n</i>	4 <i>n</i>	2 <i>n</i>	3 <i>n</i>	4 <i>n</i>
n	$(-P/\overline{P})_{\max}$	43/40	32/35	7/10	19/20	7/10	7/10	8/15	9/20
ומ	Р	-28	-20	-12	-12	-8	-4	-4	-4
D_n	\overline{P}	32	28	24	16	16	8	12	16
1 1	Р	-7 <i>n</i> +8	-5 <i>n</i> +7	-3 <i>n</i> +6	-3 <i>n</i> +4	-2 <i>n</i> +4	<i>-n</i> +2	<i>-n</i> +3	<i>-n</i> +4
A_n	\overline{P}	8 <i>n</i>	7 <i>n</i>	6 <i>n</i>	4 <i>n</i>	4 <i>n</i>	2 <i>n</i>	3 <i>n</i>	4 <i>n</i>

Tabela 5: c, \overline{P} i c' za $E_x^y \cdot X \cdot Y$ i $E_x^y \cdot X \cdot Y \cdot Z$ $(X, Y, Z \in \{D_n^n, D_n^1, A_n^1\})$

	С	\overline{P}	с′
$E_8^8 \cdot D_n^n \cdot A_k^1$	8n+32k-7nk	8nk	16n + 64k - 22nk
$E_7^7 \cdot D_n^n \cdot D_k^1$	112-20 <i>n</i>	28 <i>n</i>	224–68 <i>n</i>
$E_7^7 \cdot D_n^n \cdot A_k^1$	-5nk + 7n + 28k	7nk	-17nk+14n+56k
$E_6^6 \cdot D_n^n \cdot D_k^k$	24n + 24k - 9nk	6nk	24(2n+2k-nk)
$E_6^6 \cdot D_n^n \cdot D_k^1$	96–12 <i>n</i>	24 <i>n</i>	192–48 <i>n</i>
$E_6^6 \cdot D_n^n \cdot A_k^1$	3(-nk+8k+2n)	6nk	12(-nk+4k+n)
$E_8^7 \cdot D_n^n \cdot D_k^1$	64–12 <i>n</i>	16 <i>n</i>	128-40 <i>n</i>
$E_8^7 \cdot D_n^n \cdot A_k^1$	4n+16k-3nk	4nk	8n + 32k - 10nk
$E_7^6 \cdot D_n^n \cdot D_k^k$	16n + 16k - 6nk	4nk	16(2n+2k-nk)
$E_7^6 \cdot D_n^n \cdot D_k^1$	64–8 <i>n</i>	16 <i>n</i>	128-32 <i>n</i>
$E_7^6 \cdot D_n^n \cdot A_k^1$	2(-nk+8k+2n)	4nk	8(-nk+4k+n)
$E_8^1 \cdot D_n^n \cdot D_k^k$	8n+8k-3nk	2nk	8(-nk+2n+2k)

Tabela 5.1.

$E_8^1 \cdot D_n^n \cdot D_k^1$	32-4 <i>n</i>	8 <i>n</i>	64–16 <i>n</i>
$E_8^1 \cdot D_n^n \cdot A_k^1$	-nk+8k+2n	2nk	4(-nk+4k+n)
$E_7^1 \cdot D_n^n \cdot D_k^k$	12n+12k-4nk	3nk	24n + 24k - 11nk
$E_7^1 \cdot D_n^n \cdot D_k^1$	48 - 4n	12 <i>n</i>	96–20 <i>n</i>
$E_7^1 \cdot D_n^n \cdot A_k^1$	-nk+12k+3n	3nk	-5nk + 24k + 6n
$E_6^1 \cdot D_n^n \cdot D_k^k$	-5nk+16n+16k	4nk	-14nk + 32n + 32k
$E_6^1 \cdot D_n^n \cdot D_k^1$	64 - 4n	16 <i>n</i>	128 - 24n
$E_6^1 \cdot D_n^n \cdot A_k^1$	-nk+16k+4n	4nk	-6nk + 32k + 8n

Tabela 5.2.

	С	\overline{P}_2	с′
$E_8^8 \cdot D_n^1 \cdot A_k^1 \cdot A_l^1$	4(8k+8l-7kl)	32 <i>kl</i>	8(8k+8l-11kl)
$E_7^7 \cdot D_n^1 \cdot A_k^1 \cdot A_l^1$	4(7k+7l-5kl)	28 <i>kl</i>	4(14k+14l-25kl)
$E_6^6 \cdot D_n^1 \cdot A_k^1 \cdot A_l^1$	12(-kl+2k+2l)	24 <i>kl</i>	48(-kl+k+l)
$E_8^7 \cdot D_n^1 \cdot A_k^1 \cdot A_l^1$	4(-3kl+4k+4l)	16 <i>kl</i>	8(-5kl+4k+4l)
$E_7^6 \cdot D_n^1 \cdot A_k^1 \cdot A_l^1$	8(-kl+2k+2l)	16 <i>kl</i>	32(-kl+k+l)
$E_8^1 \cdot D_n^1 \cdot A_k^1 \cdot A_l^1$	4(-kl+2k+2l)	8kl	16(-kl+k+l)
$E_7^1 \cdot D_n^1 \cdot A_k^1 \cdot A_l^1$	4(-kl+3k+3l)	12 <i>kl</i>	4(-5kl+6k+6l)
$E_6^1 \cdot D_n^1 \cdot A_k^1 \cdot A_l^1$	4(-kl+4k+4l)	16 <i>kl</i>	8(-3kl+4k+4l)

Tabela 5.3.

	С	\overline{P}_2	<i>c</i> ′
$E_8^8 \cdot A_n^1 \cdot A_k^1 \cdot A_l^1$	-7nkl + 8kl + 8nk + 8nl	8nkl	-22nkl+16(nk+kl+nl)
$E_7^7 \cdot A_n^1 \cdot A_k^1 \cdot A_l^1$	-5nkl + 7(kl + nl + nk)	7nkl	-17nkl + 14(nk + kl + nl)
$E_6^6 \cdot A_n^1 \cdot A_k^1 \cdot A_l^1$	-3nkl+6kl+6nl+6nk	6nkl	12(-nkl+nk+kl+nl)
$E_8^7 \cdot A_n^1 \cdot A_k^1 \cdot A_l^1$	-3nkl + 4(kl + nl + nk)	4nkl	2(-5nkl+4nk+4kl+4nl)
$E_7^6 \cdot A_n^1 \cdot A_k^1 \cdot A_l^1$	-2nkl + 4kl + 4nl + 4nk	4nkl	8(-nkl+nk+kl+nl)
$E_8^1 \cdot A_n^1 \cdot A_k^1 \cdot A_l^1$	-7nkl + 4nk + 4kl + 4nl	2nkl	8(-2nkl+nk+kl+nl)
$E_7^1 \cdot A_n^1 \cdot A_k^1 \cdot A_l^1$	-nkl + 3(kl + nl + nk)	3nkl	-5nkl+6nk+6kl+6nl
$\boxed{E_6^1 \cdot A_n^1 \cdot A_k^1 \cdot A_l^1}$	-nkl+4kl+4nl+4nk	4nkl	2(-3nkl+4nk+4kl+4nl)

Tabela 6.1.-7. $W_{47} - W_{309}$

Tabela 6.1.
$$W_{47} - W_{53} (E_x^y \cdot D_n^n \cdot D_k^k)$$

Tabela 6.2.
$$W_{54} - W_{60} \left(E_x^y \cdot D_n^n \cdot D_k^1 \right)$$
i
 $W_{61} \left(E_x^y \cdot D_n^n \cdot D_k^1 \cdot A_l^1 \right)$

	E_{6}^{6}	E_{7}^{6}	E_{8}^{1}	E	7 ¹ 7	E	Z_{6}^{1}		E_{7}^{7}	E_{6}^{6}	E_{8}^{7}	E_{7}^{6}	E_8^1	E_7^1	E	1
n	5	5	5	7	6	8	6	п	5	8	5	8	8	12	16	5
k	5	5	5	5	6	5	6	1	/	/	/	/	/	/	/	2

Tabela 6.3. $W_{62} - W_{122} \ (E_x^{y} \cdot D_n^n \cdot A_k^1)$

		E	-8 '8				E_{7}^{7}						E_6^6						E_{8}^{7}		
n	5	6	7	1 0	6	7	8	1 0	1 8	9	1 0	1 1	1 2	1 3	1 6	2 4	6	7	8	9	1 6
k	1 3	4	3	2	2 1	7	4	3	2	1 8	1 0	7	6	5	4	3	1 2	5	4	3	2
				E_{7}^{6}							E_8^1							E_7^1			
n	9	1 0	1 1	1 2	1 3	1 6	2 4	9	1 0	1 1	1 2	1 3	1 6	2 4	4	5	6	7	8	9	1 0
k	1 8	1 0	7	6	5	4	3	1 8	1 0	7	6	5	4	3	4 8	3 0	2 4	2 1	1 9	1 8	1 7
		E	Z_{7}^{1}									E_6^1									
n	1 2	1 5	2 1	3 9	1 7	1 8	1 9	2 0	2 1	2 2	2 3	2 4	2 5	2 6	2 8	3 2	3 7	4 8	8 0		
k	1 6	1 5	1 4	1 3	6 8	3 6	2 5	2 0	1 6	1 4	1 3	1 2	1 1	1 0	9	8	7	6	5		

Tabela 6.4. $W_{123} - W_{132} (E_x^y \cdot D_n^n \cdot A_k^1 \cdot A_l^1)$ i $W_{133} (E_x^y \cdot D_n^n \cdot A_k^1 \cdot A_l^1 \cdot A_p^1)$

	E_{7}^{7}	E_{8}^{7}		E_7^1				E	-1 6		
n	5	5	12	6	5	5	16	9	7	6	5
k	2	2	2	6	30	8	2	3	5	12	2
l	2	2	2	2	2	3	2	2	2	2	2
р	/	/	/	/	/	/	/	/	/	/	2

Tabela 6.5. $W_{134} - W_{148} (E_x^{y} \cdot D_n^1 \cdot A_k^1 \cdot A_l^1)$

	E_{7}^{7}	E_6^6		$E_8^7 = E_7^6$		E_8^1		E_{7}^{1}			E_6^1				
k	4	4	6	4	4	6	4	6	6	7	12	8	9	12	20
l	2	4	3	2	4	3	4	3	6	5	4	8	7	6	5

Tabela 6.6. $E_x^y \cdot A_n^1 \cdot A_k^1 \cdot A_l^1$

		E	8						E_{7}^{7}							E_{6}^{6}		
n	4	5	8	24	4	5	7	21	9	11	14	21	70	6	7	10	8	9
k	3	5	4	3	4	5	4	3	9	8	7	6	5	6	6	5	8	7
l	3		2		4		3				2			6	4	5	2	1
					E_{6}^{6}							E_{8}^{7}					E_{7}^{6}	
n	12	20	12	13	15	18	24	42	4	6	12	8	9	12	20	6	7	10
k	6	5	12	11	10	9	8	7	4	4	3	8	7	6	5	6	6	5
l		4				3			4	3				2		6	4	5
						E_{7}^{6}								E_8^1				
n	8	9	12	20	12	13	15	18	24	42	6	7	10	8	9	12	20	12
k	8	7	6	5	12	11	10	9	8	7	6	6	5	8	7	6	5	12
l		4						3			6	4	5		4			3
			E_8^1								E	E_{7}^{1}						
n	13	15	18	24	42	9	10	12	11	12	15	21	12	13	15	18	24	42
k	11	10	9	8	7	9	9	8	10	9	8	7	12	11	10	9	8	7
l			3			9	8	8		7					6			
									E_7^1									
n	15	16	17	20	23	30	45	8	24	25	26	28	30	32	36	40	48	60
k	15	14	13	12	11	10	9	120	24	23	22	21	20	19	18	17	16	15
l			r		5								4					
	1	E_{7}^{1}							E_6^1									
n	84	156	12	13	14	13	15	16	20	14	16	18	20	25	36	16	17	18
k	14	13	12	12	11	13	12	11	10	14	13	12	11	10	9	16	15	14
l		4	12	1	1		1	0				Ģ)				8	
			-						E_6^1	-					-	-	-	
n	20	24	29	40	72	19	20	22	24	28	33	42	61	140	24	25	26	28
k	13	12	11	10	9	18	17	16	15	14	13	12	11	10	24	23	22	21
l			8							7						(5	
									E_{6}^{1}									
n	30	32	36	40	48	60	140	156	40	41	42	43	45	46	48	50	53	56
k	20	19	18	17	16	15	14	13	40	39	38	37	36	35	34	33	32	31
l			6									1	5		1	1	1	
	E_6^1																	
n	60	64	70	77	86	100	120	15	220	420								
k	30	29	28	27	26	25	24	23	22	21								
l	k 30 29 28 27 26 25 24 2 l 5																	

Tabela 6.7. $W_{303} - W_{309} (E_x^y \cdot A_n^1 \cdot A_k^1 \cdot A_l^1 \cdot A_p^1)$

	E_{7}^{7}	E_{8}^{7}			E_{6}^{1}		
n	4	4	12	8	9	12	20
k	2	2	3	8	7	6	5
l	2	2	3	2	2	2	2
р	2	2	2	2	2	2	2

Tabela 7: c, \overline{P} i P za $D_n^n \cdot X$

	С	\overline{P}_2	с′
$D_n^n \cdot D_k^k \cdot D_l^l$	2(-nkl+2nk+2nl+2kl)	nkl	-5nkl + 8(nk + nl + kl)
$D_n^n \cdot D_k^k \cdot D_l^1$	4(-nk+4n+4k)	4nk	4(-3nk+8n+8k)
$D_n^n \cdot D_k^k \cdot A_l^1$	-nkl + nk + 4nl + 4kl	nkl	-3nkl + 2nk + 8nl + 8kl
$D_n^n \cdot D_k^1 \cdot A_l^1 \cdot A_p^1$	4(-nlp+4lp+nl+np)	4nlp	4(-3nlp+8lp+2nl+2np)
$D_n^n \cdot A_k^1 \cdot A_l^1 \cdot A_p^1$	-nklp + 4klp + nkl + nlp + nkp	nklp	-3nklp+8klp+2(nkl+nlp+nkp)

Tabela 8.1-18. $W_{310} - W_{1114}$

6 7 10

6 5

6 6

5

5

n k

l

Tabela 8.1. $W_{310} - W_{312} (D_n^n \cdot D_k^k \cdot D_l^l)$

Tabela 8.2. $W_{313} - W_{316} (D_n^n \cdot D_k^k \cdot D_l^1)$ i
$W_{317} (D_n^n \cdot D_k^k \cdot D_l^1 \cdot A_p^1)$

п	20	12	9	8	5
k	5	6	7	8	5
р	/	/	/	/	2

Tabela 8.3. $W_{523} - W_{555} (D_6^6 \cdot A_k^1 \cdot A_l^1 \cdot A_p^1)$

n	16	17	18	20	12	24	13	29	10	11	15	40	9	10	11	13
k	16	15	14	13	1	2	1	1		1	0			Ģ)	
l	2				3	2	3	2	5	4	3	2	9	6	5	4
п	18	72	24	16	13	12	11	10	9	42	22	17	15	14	13	12
k	Ģ)				8							7			
l	3	2	3	4	5	6	7	10	18	3	4	5	6	7	8	10
п	11	10	48	30	24	21	19	18	17	16	15	14	3	120	70	53
k		7						6							5	
l	15	35	4	5	6	7	8	9	10	12	15	21	39	6	7	8
п	45	40	36	34	32	31	30	29	28	27	26	25	24	23	22	21
k									5							
l	9	10	11	12	13	14	15	16	17	19	21	25	30	38	55	105

Tabela 8.4. $W_{382} - W_{397} (D_n^n \cdot D_k^k \cdot A_l^1 \cdot A_p^1)$ i $W_{398} (D_n^n \cdot D_k^k \cdot A_l^1 \cdot A_p^1 \cdot A_q^1)$

п	8	9	12	8	6	6	20	10	8	7	7	6	6	5	5	5	5
k	8	7	6	6	6	6	5	5	5	5	5	5	5	5	5	5	5
l	2	2	2	3	3	6	2	3	5	3	7	5	30	5	6	15	2
р	2	2	2	2	3	2	2	2	2	3	2	3	2	5	4	3	2
q	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	2

Tabela 8.5. $W_{399} - W_{419} (D_n^n \cdot D_k^1 \cdot A_l^1 \cdot A_p^1)$

п	5	5	5	5	5	6	6	6	7	7	8	8	9	9	10	11	12	12	13	16	24
l	30	17	13	11	10	12	7	6	10	5	6	4	18	4	10	7	3	6	5	4	3
р	6	7	8	9	10	4	5	6	3	4	3	4	2	2	2	2	3	2	2	2	2

Tabela 8.6. $W_{420} - W_{522} (D_5^5 \cdot A_k^1 \cdot A_l^1 \cdot A_p^1)$

	l	k	р	l	k	р	l	k	p	l	k	p	l	k	р	l	k	р	l	k
15	1	1		1	2	1	1	11		2	31		3	42		5	6		4	99
1.4	1	1		1	2		2	23	1	2	33	1	2	44		5	6		4	10
14	1	1	1	1	2		2	24	1	2	36	1	2	46		5	6		4	11
	1	1	1	1	3		2	25		2	40		2	49		5	6		4	12
12	1	1		1	2		1	27	0	1	44		2	53		5	6		3	13
15	1	1		1	5		1	30	8	1	51		2	58		5	6		3	14
	1	2		2	2	9	1	33		1	61	7	2	64		5	7	6	3	15
	1	1		1	2		1	37		1	80		2	73	6	5	7		3	18
	1	1		1	2		1	45		1	12		2	85		5	7		3	21
10	1	2		1	2		1	57	1	1	28	1	2	10		4	7		3	25
12	1	2		1	2		1	83		3	35		2	14		4	8		3	33
	1	2	U	1	3		1	18	1	3	36	1	1	22		4	8		3	48
	1	3		1	3		2	27	7	3	37		1	63		4	8		3	93
11	1	1		1	4	8	2	28	1	3	38	6	6	60		4	9			•
	1	1		1	6		2	30]	3	40	0	5	61		4	9			

Tabela 8.7. $W_{523} - W_{555} (D_6^6 \cdot A_k^1 \cdot A_l^1 \cdot A_p^1)$

р	l	k	р	l	k	р	l	k	р	l	k	р	l	k	р	l	k
9	9	9	7	7	21	6	7	42		10	30		21	28		15	60
0	9	10	6	12	12	5	15	15	5	9	45		20	30	4	14	84
0	8	12		11	13		14	16	5	8	120	4	19	32	т	13	156
	10	11	6	10	15	5	13	17		24	24		18	36			
7	9	12	0	9	18	5	12	20	4	23	25		17	40			
	8	15		8	24		11	23		22	26		16	48			

Tabela 8.8.	W_{556} -	$-W_{579}$	(D_7^7)	$\cdot A_k^1 \cdot$	$\cdot A_l^1 \cdot$	(A_p^1)
-------------	-------------	------------	-----------	---------------------	---------------------	-----------

р	l	k	р	l	k	р	l	k	р	l	k	р	l	k	р	l	k
7	7	7		7	11		10	12	4	6	84		18	25		14	42
6	7	8	5	6	16	1	9	14		21	21	2	17	27	2	13	54
0	6	10		5	35	4	8	18	3	20	22	3	16	30	3	12	84
5	8	9	4	11	11		7	28		19	23		15	35		11	232

n	р	l	k	п	р	l	k	n	р	l	k	п	р	l	k	п	р	l	k
	6	6	6			8	10			13	43		3	4	12			9	9
	5	6	7	0	2	7	12	10	2	12	60			12	12			8	11
		5	10	9	3	6	18			11	110			11	13	14	2	7	14
		8	8			5	45		4	5	5	12	2	10	15			6	21
0	4	7	9		5	5	5		4	4	7		2	9	18			5	70
0	4	6	12		4	5	6			6	7			8	24		2	5	5
		5	20	10	4	4	10	11	3	5	9			7	42		3	3	15
		12	12	10		7	8			4	18		4	4	5	15		8	9
	3	11	13		3	6	10		2	14	15	13	2	5	6		2	7	11
		10	15			5	15		2	13	16		3	4	9			6	15
		9	18		3	4	60			12	18		3	3	39	15	5	5	30
8	3	8	24			20	20			11	22			10	10		4	4	4
		7	42			19	21	11		10	27	12		9	12		2	4	6
	5	5	6	10		18	22			9	39	13	2	8	14		3	3	12
		6	7	10	2	17	24			8	88			7	20	16		8	8

24

7 9

Tabela 8.9. $W_{580} - W_{669} (D_n^n \cdot A_k^1 \cdot A_l^1 \cdot A_p^1, n = 8, ..., 16)$

7 6

12

р	l	k	n	p	l	k	n	p	l	k	n	р	l	k	п	р	l	k	п
	4	5	18			8	19			36	18		4	5	80			17	37
	4	4	24		6	7	21			25	19			150	25			16	38
		10	17			6	24			20	20			78	26			15	40
		9	18			15	17			16	21			54	27			14	42
3		8	19			12	18			14	22			42	28			13	44
	3	7	21			11	19			13	23			34	29		3	12	48
		6	24	2		10	20	2	4	12	24	2	2	30	30	2		11	52
		5	30		5	9	21			11	25		3	26	31			10	60
		4	48			8	22			10	26			24	32			9	72
	7	8	17	1		7	25	1		9	28	1		22	33			8	96
	/	7	18			6	30			8	32			20	34			7	168
2	6	10	17]		5	40]		7	37]		19	35				
	0	9	18]	4	68	17]		6	48]		18	36				

Tabela 8.10. $W_{670} - W_{732} \ (D_n^n \cdot A_k^1 \cdot A_l^1 \cdot A_p^1, \ n \ge 17)$

Tabela 8.11. $W_{733} - W_{753} (D_n^n \cdot A_k^1 \cdot A_l^1 \cdot A_p^1 \cdot A_q^1)$

п	5	5	5	5	5	5	6	5	6	7	6	12	9	7	24	16	13	12	11	10	9
k	8	30	10	11	13	17	6	30	7	5	12	3	4	10	3	4	5	6	7	9	18
l	4	3	10	9	8	7	6	6	5	4	4	3	3	3	2	2	2	2	2	2	2
р		3										2									
q											2										

Tabela 8.12. $W_{754} - W_{771} (D_n^1 \cdot A_k^1 \cdot A_l^1 \cdot A_p^1 \cdot A_q^1)$

k	4	6	6	7	12	6	7	10	8	9	12	20	12	13	15	18	24	42
l	4	4	6	5	4	6	6	5	8	7	6	5	12	11	10	9	8	7
р	4	4	3	3	3	6	5	5	4	4	4	4	3	3	3	3	3	3
q	4			3								2	2					

-																					
q	5					4										3					
р	5	5				4				6		4	5					4			
l	5	5	6	4	5			4		6	6		5		7		6			5	
k	5	5	6	6	5	8	7	6	5	6	6	7	6	5	7	8	7	6	9	8	7
n	5	6	6	7	1 0	8	9	12	2 0	6	7	8	1 0	1 5	7	8	9	1 2	9	10	1 3
q											3										
р					4										3						
l	4	5				4			9	8	3			7					6		
k	6	5	1 2	1 1	1 0	9	8	7	9	9	8	1 0	9	8	7	1 2	1 1	1 0	9	8	7
n	2 0	6 0	1 2	1 3	1 5	1 8	2 4	42	9	1 0	1 2	1 1	1 2	1 5	2 1	1 2	1 3	1 5	1 8	24	4 2
q											3										
р											3										
l					5										4						
k	1 5	1 4	1 3	1 2	1 1	1 0	9	8	2 4	2 3	2 2	2 1	2 0	1 9	1 8	1 7	1 6	1 5	1 4	15	
n	1 5	1 6	1 7	2 0	2 3	3 0	4 5	12 0	2 4	2 5	2 6	2 8	3 0	3 2	3 6	4 0	4 8	6 0	8 4	15 6	

Tabela 8.13. $W_{772} - W_{833} (A_n^1 \cdot A_k^1 \cdot A_l^1 \cdot A_p^1 \cdot A_q^1, q > 2)$

Tabela 8.14. $W_{834} - W_{851} (A_n^1 \cdot A_k^1 \cdot A_l^1 \cdot A_p^1 \cdot A_2^1, p > 5)$

р	8	7				6												
l	8	8	7			9	8		7				6					
k	8	8	9	8	7	9	9	8	10	9	8	7	12	11	10	9	8	7
п	8	9	9	11	14	9	10	12	11	12	15	21	12	13	15	18	24	42

Tabela 8.15. $W_{852} - W_{882} (A_n^1 \cdot A_k^1 \cdot A_l^1 \cdot A_5^1 \cdot A_2^1)$

l	10	9		8				7						6		
k	10	10	9	11	10	9	8	12	11	10	9	8	7	15	14	13
п	10	11	12	11	13	15	20	13	15	17	21	32	70	15	16	17
l	6					5										
k	12	11	10	9	8	20	19	18	17	16	15	14	13	12	11	
п	20	23	30	45	120	20	21	22	24	26	30	35	43	60	110	

l	12	11		10				9						8		
k	12	12	11	13	12	11	10	14	13	12	11	10	9	16	15	14
n	12	13	14	13	15	16	20	14	16	18	20	25	36	16	17	18
l	8						7								6	
k	13	12	11	10	9	18	17	16	15	14	13	12	11	10	24	23
n	20	24	29	40	72	19	20	22	24	28	33	42	61	140	24	25
l	6										5					
k	22	21	20	19	18	17	16	15	14	13	40	39	38	37	36	35
n	26	28	30	32	36	40	48	60	84	156	40	41	42	43	45	46
l	5															
k	34	33	32	31	30	29	28	27	26	25	24	23	22	21		
n	48	50	53	56	60	64	70	77	86	100	120	153	220	420		

Tabela 8.16. $W_{853} - W_{944} (A_n^1 \cdot A_k^1 \cdot A_l^1 \cdot A_4^1 \cdot A_2^1)$

Tabela 8.17. $W_{945} - W_{1099} (A_n^1 \cdot A_k^1 \cdot A_l^1 \cdot A_3^1 \cdot A_2^1)$

l	18	1	7		1	6				1	5					14		
k	18	18	17	19	18	17	16	20	19	18	17	16	15	21	20	19	18	17
п	18	19	20	19	20	22	24	20	21	22	24	26	30	21	22	23	25	27
l		14						1	3							12		
k	16	15	14	22	21	20	19	18	17	16	15	14	13	24	23	22	21	20
п	30	35	42	22	23	25	26	29	32	36	43	54	78	24	25	26	28	30
l				12									11					
k	19	18	17	16	15	14	13	26	25	24	23	22	21	20	19	18	17	16
п	32	36	40	48	60	84	15 6	26	27	29	30	33	35	38	43	49	59	75
l	1	1								10								9
k	15	14	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	36
n	11 0	23 1	30	31	32	33	35	37	40	43	47	52	60	71	90	12 7	24 0	36
l									9									8
k	35	34	33	32	31	30	29	28	27	26	25	24	23	22	21	20	19	48
n	37	38	39	41	42	45	47	50	54	58	64	72	82	99	12 6	18 0	39 2	48
l									5	3								
k	47	46	45	44	43	42	41	40	39	38	37	36	35	34	33	32	31	30
п	49	50	51	52	54	56	57	60	62	65	68	72	76	81	88	96	10 6	12 0
l			8									7						
k	29	28	27	26	25	84	83	82	81	80	79	78	77	76	75	74	73	72
n	13 9	16 8	21 6	31 2	60 0	84	85	86	87	88	89	91	92	93	95	97	98	10 0
l									,	7								
k	71	70	69	68	67	66	65	64	63	62	61	60	59	58	57	56	55	54
10	10	10	10	10	11	11	11	12	12	13	13	14	14	15	15	16	17	18
n	2	5	7	9	2	5	8	2	6	0	4	0	5	2	9	8	7	9
l						7	7											
k	53	52	51	50	49	48	47	46	45	44	4	-3						
n	20 2	21 8	23 8	26 2	29 4	33 6	39 4	48 3	63 0	92 4	18	06						

Tabela 8.18.	$W_{1100} - W_{1114}$	$(A_n^1 \cdot$	$\cdot A_k^1 \cdot$	$A_l^1 \cdot$	$\cdot A_p^1 \cdot$	$\cdot A_3^1 \cdot$	(A_{2}^{1})	
--------------	-----------------------	----------------	---------------------	---------------	---------------------	---------------------	---------------	--

р		3							2	2					
l		3	6	5	5			4				3	3		
k	5	4	6	6	5	5 8 7 6 5 12 11 10 9 8				7					
n	7	12	6	7	10	8	9	12	20	12	13	15	18	24	42

Tabela 9. 1.-3.

Tabela 9.1. $A_1H_{53} - A_1H_{57}$

	8	9	12	20	5
k	8	7	6	5	5
l	/	/	/	/	2

Tabela 9.2. $A_1H_{58} - A_1H_{60}$

n	5	6	8
l	5	3	2

Tabela 9.3. $A_1H_{61} - A_1H_{81}$

n			5				6			7	8	3	9		10	11	1	2	13	16	24
k	10	11	13	17	30	6	7	12	5	10	4	6	18	4	10	7	3	9	5	4	3
l	10	9	8	7	6	6	5	4	4	3	4	3	2	3	2	2	3	2	2	2	2

Tabela 9.4. $A_1H_{82} - A_1H_{99}$

р	4			3			2											
l	4	4 3				6		5			4				(*) (*)	3		
k	4	4	6	5	4	6	6	5	8	7	6	5	12	11	10	9	8	7
n	4	6	6	7	12	6	7	10	8	9	12	20	12	13	15	18	24	42

Tabela 10.1.-10.2.

Tabela 10.1.
$$A_3H_{16} - A_3H_{22}$$

n	9	10	11	12	13	16	24
k	18	10	7	6	5	4	3

Tabela 10.2. $A_3H_{25} - A_3H_{37}$

l	6		5			4		3					
k	6	6	5	8	7	6	5	12	11	10	9	8	7
п	6	7	10	8	9	12	20	12	13	15	18	24	42

Prilog III D5 - dodatak petoj glavi

F_i	b	$P_{T_1}(2)$	$P_{L_1}(2)$	$P_{T_1}(2) - 2kP_{L_1}(2)$	k _{max}
F_1	S	-64	-16	32(k-2)	2
F_2	<i>S</i> ₁	-16	-4	8(k-2)	2
	S_2	-32	-4	8(k-4)	4
	<i>S</i> ₃	-12	-4	4(2k-3)	1*
F_3	<i>S</i> ₁	-12	-3	6(k-2)	2
	S_2	-24	-3	6(k-4)	4
	<i>S</i> ₃	-42	-3	6(k-7)	7
	S_4	-20	-3	6k - 20	3*
	S_5	-8	-3	6k - 8	1*
F_4	<i>S</i> ₁	-8	-2	4(k-2)	2
	S_2	-16	-2	4(k-4)	4
	<i>S</i> ₃	-28	-2	4(k-7)	7
	S_4	-44	-2	4(k-11)	11
	S_5	-25	-2	4k - 25	6*
	S_6	-12	-2	4(k-3)	3
	S_7	-5	-2	4k - 5	1*
	S_8	-13	-2	4 <i>k</i> -13	3*
F_5	<i>S</i> ₁	-4	-1	2(k-2)	2
	S_2	-8	-1	2(k-4)	4
	<i>S</i> ₃	-14	-1	2(k-7)	7
	S_4	-22	-1	2(k-11)	11
	S_5	-32	-1	2(k-16)	16
	S_6	-44	-1	2(k-22)	22
	S_7	-20	-1	2(k-10)	10
	<i>S</i> ₈	-6	-1	2(k-3)	3
	<i>S</i> ₉	-12	-1	2(k-6)	6
F_6	<i>S</i> ₁	-16	-4	8(<i>k</i> -2)	2
	S_2	-32	-4	8(k-4)	4
	<i>S</i> ₃	-28	-4	4(2k-7)	3*

Tabela 1.

S_4	-11	-4	8 <i>k</i> – 11	1*
S_5	-12	-4	8 <i>k</i> -12	1*

F_i	b	$P_{T_1}(2)$	$P_{L_1}(2)$	$P_{T_1}(2) - 2kP_{L_1}(2)$	k _{max}
F_7	<i>s</i> ₁	-16	-4	8(<i>k</i> – 2)	2
	<i>s</i> ₂	-32	-4	8(k-4)	4
	<i>s</i> ₃	-28	-4	4(2k-7)	3*
	S_4	-24	-4	8(k-3)	3
	S_5	-10	-4	2(4k-5)	1*
	<i>s</i> ₆	-12	-4	8 <i>k</i> -12	1*
F_8	<i>s</i> ₁	-16	-4	8(<i>k</i> -2)	2
	<i>s</i> ₂	-32	-4	8(k-4)	4
	<i>s</i> ₃	-28	-4	4(2k-7)	3*
	S_4	-24	-4	8(k-3)	3
	S_5	-20	-4	4(2k-5)	2*
	<i>s</i> ₆	-9	-4	8k - 9	1*
	<i>s</i> ₇	-12	-4	8 <i>k</i> – 12	1*
F_9	<i>s</i> ₁	-16	-4	8(<i>k</i> – 2)	2
	<i>s</i> ₂	-32	-4	8(k-4)	4
	<i>s</i> ₃	-28	-4	4(2k-7)	3*
	S_4	-24	-4	8(k-3)	3
	<i>S</i> ₅	-20	-4	4(2k-5)	2*
	<i>s</i> ₆	-16	-4	8(k-2)	2
	<i>s</i> ₇	-12	-4	8k - 12	1*

Tabela 2.

F_1	(b_1, b_2)	$P_{C_1}(2)$	$P_{K_1}(2)$	$P_{C_1}(2) - 2(k-1)P_{K_1}(2)$	k _{max}
	(x, x_1)	-48	-16	16(2k-5)	2*
	(x,s)	-96	-16	32(k-4)	4

F_2	(b_1, b_2)	$P_{C_1}(2)$	$P_{K_1}(2)$	$P_{C_1}(2) - 2(k-1)P_{K_1}(2)$	k _{max}
	(x, s_1)	-24	-4	8(k-4)	4
	(x, s_2)	-48	-4	8(k-7)	7
	(x, s_3)	-20	-4	4(2k-7)	3*
	(s_1, s_2)	-72	-4	8(k-10)	10
	(s_1, s_3)	-36	-4	4(2k-11)	5*
	(s_2, s_3)	-60	-4	4(2k-17)	8*
	(s_3, s_4)	-28	-4	4(2k-9)	4*

F_3	(b_1, b_2)	$P_{C_1}(2)$	$P_{K_1}(2)$	$P_{C_1}(2) - 2(k-1)P_{K_1}(2)$	k _{max}
	(x, s_1)	-18	-3	6(k-4)	4
	(x, s_2)	-36	-3	6(k-7)	7
	(x, s_3)	-60	-3	6(k-11)	11
	(x, s_4)	-32	-3	2(3k-19)	6*
	(x, s_5)	-14	-3	2(3k-10)	3*
	(s_1, s_2)	-54	-3	6(k-10)	10
	(s_1, s_3)	-84	-3	6(k-15)	15
	(s_1, s_4)	-50	-3	2(3k-28)	9*
	(s_1, s_5)	-26	-3	2(3k-16)	5*
	(s_2, s_3)	-114	-3	6(k-20)	20
	(s_2, s_4)	-74	-3	2(3k-40)	13*
	(s_2, s_5)	-44	-3	2(3k-25)	8*
	(s_3, s_4)	-104	-3	2(3k-55)	18*
	(s_3, s_5)	-68	-3	2(3k-37)	12*
	(s_4, s_5)	-36	-3	6(k-7)	7
	(s_4, s_6)	-66	-3	6(k-12)	12
	(s_4, s_7)	-38	-3	2(3k-22)	7*
	(s_5, s_7)	-18	-3	6(k-4)	4

F_4	(b_1, b_2)	$P_{C_1}(2)$	$P_{K_1}(2)$	$P_{C_1}(2) - 2(k-1)P_{K_1}(2)$	k _{max}
	(x, s_1)	-12	-2	4(k-4)	4
	(x, s_2)	-24	-2	4(k-7)	7
	(x, s_3)	-40	-2	4(k-11)	11
	(x, s_4)	-60	-2	4(k-16)	16
	(x, s_5)	-37	-2	4k - 41	10*
	(x, s_6)	-20	-2	4(k-6)	6
	(x, s_7)	-9	-2	4 <i>k</i> -13	3*
	(x, s_8)	-21	-2	4k - 25	6*
	(s_1, s_2)	-36	-2	4(k-10)	10
	(s_1, s_3)	-56	-2	4(k-15)	15
	(s_1, s_4)	-80	-2	4(k-21)	21
	(s_1, s_5)	-53	-2	4k - 57	14*
	(s_1, s_6)	-32	-2	4(k-9)	9
	(s_1, s_7)	-17	-2	4k - 21	5*
	(s_1, s_8)	-33	-2	4k - 37	9*
	(s_2, s_3)	-76	-2	4(k-20)	20
	(s_2, s_4)	-104	-2	4(k-27)	27
	(s_{2}, s_{5})	-73	-2	4k - 77	19*
	(s_{2}, s_{6})	-48	-2	4(k-13)	13
	(s_2, s_7)	-29	-2	4k - 33	8*
	(s_{2}, s_{8})	-45	-2	4k - 49	12*
	(s_{3}, s_{4})	-132	-2	4(k-34)	34
	(s_{3}, s_{5})	-97	-2	4k - 101	25*
	(s_{3}, s_{6})	-68	-2	4(k-18)	18
	(s_{3}, s_{7})	-45	-2	4k - 49	12*
	(s_3, s_8)	-69	-2	4k - 73	18*
	(s_4, s_5)	-125	-2	4 <i>k</i> -129	32*
	(s_4, s_6)	-92	-2	4(k-24)	24
	(s_4, s_7)	-65	-2	4k - 69	17*
	(s_{4}, s_{8})	-93	-2	4k - 97	24*
	(s_5, s_6)	-61	-2	4k - 65	16*
	(s_5, s_7)	-40	-2	4(k-11)	11

(s_5, s_8)	-64	-2	4(k-17)	17
(s_6, s_7)	-21	-2	4k - 25	6*
(s_6, s_8)	-41	-2	4k - 45	10*
(s_{7}, s_{8})	-24	-2	4(k-7)	7

F_5	(b_1, b_2)	$P_{C_1}(2)$	$P_{K_1}(2)$	$P_{C_1}(2) - 2(k-1)P_{K_1}(2)$	k _{max}
	(x, s_1)	-6	-1	2(k-4)	4
	(x, s_2)	-8	-1	2(k-5)	5
	(x, s_3)	-20	-1	2(k-11)	11
	(x, s_4)	-30	-1	2(k-16)	16
	(x, s_5)	-42	-1	2(k-22)	22
	(x, s_6)	-56	-1	2(k-29)	29
	(x, s_7)	-28	-1	2(k-15)	15
	(x, s_8)	-10	-1	2(k-6)	6
	(x, s_9)	-18	-1	2(k-10)	10
	(s_1, s_2)	-18	-1	2(k-10)	10
	(s_1, s_3)	-28	-1	2(k-15)	15
	(s_1, s_4)	-40	-1	2(k-21)	21
	(s_1, s_5)	-54	-1	2(k-28)	28
	(s_1, s_6)	-70	-1	2(k-36)	36
	(s_1, s_7)	-38	-1	2(k-20)	20
	(s_1, s_8)	-16	-1	2(k-9)	9
	(s_1, s_9)	-26	-1	2(k-14)	14
	(s_{2}, s_{3})	-38	-1	2(k-20)	20
	(s_2, s_4)	-52	-1	2(k-27)	27
	(s_2, s_5)	-68	-1	2(k-35)	35
	(s_{2}, s_{6})	-86	-1	2(k-44)	44
	(s_2, s_7)	-50	-1	2(k-26)	26
	(s_{2}, s_{8})	-24	-1	2(k-13)	13
	(s_{2}, s_{9})	-36	-1	2(k-19)	19
	(s_{3}, s_{4})	-66	-1	2(k-34)	34
	(s_3, s_5)	-84	-1	2(k-43)	43
	(s_3, s_6)	-104	-1	2(k-53)	53
	(s_3, s_7)	-64	-1	2(k-33)	33

$(s_{3},$	(<i>s</i> ₈)	-34	-1	2(k-18)	18
$(s_{3},$	(s_{9})	-48	-1	2(k-25)	25
(s_4)	(s_{5})	-102	-1	2(k-52)	52
(s_4)	(s_{6})	-124	-1	2(k-63)	63
(s_4)	, <i>s</i> ₇)	-80	-1	2(k-41)	41
(s_4)	(s_8)	-46	-1	2(k-24)	24
(s_4)	(s_{9})	-62	-1	2(k-32)	32
(<i>s</i> ₅ ,	(s_{6})	-146	-1	2(k-74)	74
$(s_{5},$	(s_{7})	-98	-1	2(k-50)	50
$(s_{5},$	(s_8)	-60	-1	2(k-31)	31
$(s_{5},$	(s_{9})	-78	-1	2(k-40)	40
(s_6)	(<i>s</i> ₇)	-118	-1	2(k-60)	60
(s_6)	(s_8)	-76	-1	2(k-39)	39
(s_6)	(s_{9})	-96	-1	2(k-49)	49
(<i>s</i> ₇ ,	(s_8)	-42	-1	2(k-22)	22
(<i>s</i> ₇ ,	(s_{9})	-58	-1	2(k-30)	30
$(s_{8},$	(s_{9})	-30	-1	2(k-16)	16

F_6	(b_1, b_2)	$P_{C_1}(2)$	$P_{K_1}(2)$	$P_{C_1}(2) - 2(k-1)P_{K_1}(2)$	k _{max}
	(x, s_1)	-24	-4	8(k-4)	4
	(x, s_2)	-48	-4	8(k-7)	7
	(x, s_3)	-44	-4	4(2k-13)	6*
	(x, s_4)	-19	-4	8k - 27	3*
	(x, s_5)	-20	-4	4(k-6)	6*
	(s_1, s_2)	-72	-4	8(k-10)	10
	(s_1, s_3)	-68	-4	4(2k-19)	9*
	(s_1, s_4)	-35	-4	8k - 43	5*
	(s_1, s_5)	-36	-4	4(2k-11)	5*
	(s_2, s_3)	-100	-4	4(2k-27)	13*
	(s_2, s_4)	-59	-4	8k - 67	8*
	(s_2, s_5)	-60	-4	4(2k-17)	8*
	(s_3, s_4)	-51	-4	8 <i>k</i> – 59	7*
	(s_3, s_5)	-56	-4	8(k-8)	8*
	(s_4, s_5)	-27	-4	8 <i>k</i> – 35	4*

	(s_4, s_6)	-24	-4	8(k-4)	4
F_7	(b_1, b_2)	$P_{C_1}(2)$	$P_{K_1}(2)$	$P_{C_1}(2) - 2(k-1)P_{K_1}(2)$	$k_{\rm max}$
	(x, s_1)	-24	-4	8(k-4)	4
	(x, s_2)	-48	-4	8(k-7)	7
	(x, s_3)	-44	-4	4(2k-13)	6*
	(x, s_4)	-40	-4	8(k-6)	6
	(x, s_5)	-18	-4	2(4k-13)	3*
	(x, s_6)	-20	-4	4(2k-7)	3*
	(s_1, s_2)	-72	-4	8(<i>k</i> -10)	10
	(s_1, s_3)	-68	-4	4(2k-19)	9*
	(s_1, s_4)	-64	-4	8(k-9)	9
	(s_1, s_5)	-32	-4	8(k-5)	5
	(s_1, s_6)	-36	-4	4(2k-11)	5*
	(s_2, s_3)	-100	-4	4(2k-27)	13*
	(s_2, s_4)	-96	-4	8(<i>k</i> -13)	13
	(s_2, s_5)	-58	-4	2(4k-33)	8*
	(s_2, s_6)	-60	-4	4(2 <i>k</i> -17)	8*
	(s_{3}, s_{4})	-84	-4	4(2k-23)	11*
	(s_{3}, s_{5})	-50	-4	2(4k-27)	6*
	(s_3, s_6)	-56	-4	8(k-8)	8
	(s_4, s_5)	-42	-4	2(4k-25)	6*
	(s_4, s_6)	-52	-4	4(2k-15)	7*
	(s_5, s_6)	-26	-4	2(4k-17)	4*
	(s_5, s_7)	-20	-4	4(2k-7)	3*

F_8	(b_1, b_2)	$P_{C_1}(2)$	$P_{K_1}(2)$	$P_{C_1}(2) - 2(k-1)P_{K_1}(2)$	k _{max}
	(x, s_1)	-24	-4	8(k-4)	4
	(x, s_2)	-48	-4	8(k-7)	7
	(x, s_3)	-44	-4	4(2k-13)	6*
	(x, s_4)	-40	-4	8(k-6)	6
	(x, s_5)	-36	-4	4(2k-11)	5*
	(x,s_6)	-17	-4	8 <i>k</i> – 25	3*

3*	4(2k-7)	-4	-20	(x, s_7)
10	8(k-10)	-4	-72	(s_1, s_2)
9*	4(2k-19)	-4	-68	(s_1, s_3)
9	8(k-9)	-4	-64	(s_1, s_4)
8*	4(2k-17)	-4	-60	(s_1, s_5)
5*	8k - 41	-4	-33	(s_1, s_6)
5*	4(2k-11)	-4	-36	(s_1, s_7)
13*	4(2k-27)	-4	-100	(s_2, s_3)
13	8(<i>k</i> -13)	-4	-96	(s_2, s_4)
12*	4(2k-25)	-4	-92	(s_2, s_5)
8*	8 <i>k</i> – 65	-4	-57	(s_2, s_6)
8*	4(2k-17)	-4	-60	(s_2, s_7)
11*	4(2k-23)	-4	-84	(s_3, s_4)
11	8(k-11)	-4	-80	(s_3, s_5)
7*	8k - 57	-4	-49	(s_3, s_6)
8	8(k-8)	-4	-56	(s_3, s_7)
9*	4(2k-19)	-4	-68	(s_4, s_5)
6*	8k - 49	-4	-41	(s_4, s_6)
7*	4(2k-15)	-4	-52	(s_4, s_7)
5*	8k - 41	-4	-33	(s_5, s_6)
7	8(k-7)	-4	-48	(s_5, s_7)
4*	8 <i>k</i> – 33	-4	-25	(s_6, s_7)
3	8(k-3)	-4	-16	(s_{6}, s_{8})

F_9	(b_1, b_2)	$P_{C_1}(2)$	$P_{K_1}(2)$	$P_{C_1}(2) - 2(k-1)P_{K_1}(2)$	k _{max}
	(x, s_1)	-24	-4	8(k-4)	4
	(x, s_2)	-48	-4	8(k-7)	7
	(x, s_3)	-44	-4	4(2k-13)	6*
	(x, s_4)	-40	-4	8(k-6)	6
	(x, s_5)	-36	-4	4(2k-11)	5*
	(x, s_{6})	-32	-4	8(k-5)	5
	(x, s_7)	-20	-4	4(2k-7)	3*
	(x, x_1)	-16	-4	8(k-3)	3
	(s_1, s_2)	-72	-4	8(k-10)	10

9*	4(2k-19)	-4	-68	(s_1, s_3)	
9	8(k-9)	-4	-64	(s_1, s_4)	
8*	4(2k-17)	-4	-60	(s_1, s_5)	
8	8(k-8)	-4	-56	(s_1, s_6)	
5*	4(2k-11)	-4	-36	(s_1, s_7)	
5	8(k-5)	-4	-32	(s_1, x_1)	
13*	4(2k-27)	-4	-100	(s_2, s_3)	
13	8(<i>k</i> -13)	-4	-96	(s_2, s_4)	
12*	4(2k-25)	-4	-92	(s_2, s_5)	
12	8(k-12)	-4	-88	(s_{2}, s_{6})	
8*	4(2k-17)	-4	-60	(s_2, s_7)	
8	8(k-8)	-4	-56	(s_2, x_1)	
11*	4(2k-23)	-4	-84	(s_{3}, s_{4})	
11	8(<i>k</i> -11)	-4	-80	(s_3, s_5)	
10*	4(2k-21)	-4	-76	(s_3, s_6)	
8	8(k-8)	-4	-56	(s_3, s_7)	
7	8(k-7)	-4	-48	(s_3, x_1)	
9*	4(2k-19)	-4	-68	(s_4, s_5)	
9	8(k-9)	-4	-64	(s_4, s_6)	
7*	4(2k-15)	-4	-52	(s_4, s_7)	
6	8(k-6)	-4	-40	(s_4, x_1)	
7*	4(2k-15)	-4	-52	(s_5, s_6)	
7	8(k-7)	-4	-48	(s_5, s_7)	
5	8(k-5)	-4	-32	(s_5, x_1)	
6*	4(2k-13)	-4	-44	(s_6, s_7)	
4	8(k-4)	-4	-24	(s_6, x_1)	
4	8(k-4)	-4	-24	(s_7, x_1)	
Biografija autora

Mr Bojana Mihailović rođena je 1960. godine u Beogradu, gde je završila osnovnu školu "Braća Ribar" i Drugu beogradsku gimnaziju. Diplomirala je 1985. godine na Prirodno-matematičkom fakultetu u Beogradu, smer "Matematičke strukture", sa prosečnom ocenom 8,71. Iste godine upisala je i poslediplomske studije na Matematičkom fakultetu, smer "Opšta topologija". Poslediplomske studije na smeru "Matematičke metode u elektrotehnici i računarstvu" na Elektrotehničkom fakultetu u Beogradu upisala je 2003. godine. Magistarski rad pod naslovom "Stabloliki reflekivni grafovi" pod rukovodstvom profesora dr Zorana Radosavljevića odbranila je 2008. godine. Izradu doktorske disertacije pod navedenim naslovom Naučno-nastavno veće Matematičkog fakulteta u Beogradu odobrilo joj je 18.11.2011.

Od 1986. do 1989. radila je na određeno vreme na Matematičkom fakultetu u Beogradu kao student-saradnik i asistent-pripravnik, a od 1989. godine radi na Elektrotehničkom fakultetu u Beogradu na Katedri za primenjenu matematiku u raznim zvanjima (asistent-pripravnik, stručni saradnik, viši laboratorijski inženjer, asistent). Na Matematičkom fakultetu držala je vežbe iz predmeta Analiza 1, Analiza 2 i Nacrtna geometrija, a na Elektrotehničkom fakultetu vežbe iz predmeta Matematika I i Matematika II, a zatim Matematika 1, Matematika 2, Matematika 3, Matematika 4, Matematika 5, Verovatnoća i statistika, Praktikum iz matematike 1, Praktikum iz matematike 2 i Praktikum iz matematike 4 za studente studijskog programa Elektrotehnika i računarstvo, kao i vežbe iz predmeta Matematika 1, Matematika 2, Verovatnoća i statistika, Praktikum iz matematike 2 za studente studijskog programa Softversko inženjerstvo. U periodu od 1991. do 2000. držala je i vežbe iz predmeta Matematika 1 i Matematika 1 i Matematika 2 na Vazduhoplovnoj vojno-tehničkoj akademiji u Žarkovu, kao i vežbe iz predmeta Engineering Mathematics za studente iz Libije.

Прилог 1.

Изјава о ауторству

Потписани-а Бојана Михаиловић

број уписа _____

Изјављујем

да је докторска дисертација под насловом

Неке класе графова са датим ограничењем друге сопствене вредности

- резултат сопственог истраживачког рада,
- да предложена дисертација у целини ни у деловима није била предложена за добијање било које дипломе према студијским програмима других високошколских установа,
- да су резултати коректно наведени и
- да нисам кршио/ла ауторска права и користио интелектуалну својину других лица.

Потпис докторанда

У Београду, <u>9.5.2016.</u>

Egatra Muxace whit

Прилог 2.

Изјава о истоветности штампане и електронске верзије докторског рада

Име и презиме аутораБојана Михаиловић
Број уписа
Студијски програм
Наслов рада Неке класе графова са датим ограничењем друге сопствене вредности
Ментордр Зоран Радосављевић

Потписани Бојана Михаиловић

изјављујем да је штампана верзија мог докторског рада истоветна електронској верзији коју сам предао/ла за објављивање на порталу **Дигиталног репозиторијума Универзитета у Београду.**

Дозвољавам да се објаве моји лични подаци везани за добијање академског звања доктора наука, као што су име и презиме, година и место рођења и датум одбране рада.

Ови лични подаци могу се објавити на мрежним страницама дигиталне библиотеке, у електронском каталогу и у публикацијама Универзитета у Београду.

Потпис докторанда

У Београду, _____ 9.5.2016. _____

Objaura Muxacenolit

Прилог 3.

Изјава о коришћењу

Овлашћујем Универзитетску библиотеку "Светозар Марковић" да у Дигитални репозиторијум Универзитета у Београду унесе моју докторску дисертацију под насловом:

Неке класе графова са датим ограничењем друге сопствене вредности

која је моје ауторско дело.

Дисертацију са свим прилозима предао/ла сам у електронском формату погодном за трајно архивирање.

Моју докторску дисертацију похрањену у Дигитални репозиторијум Универзитета у Београду могу да користе сви који поштују одредбе садржане у одабраном типу лиценце Креативне заједнице (Creative Commons) за коју сам се одлучио/ла.

1. Ауторство

2. Ауторство - некомерцијално

3.)Ауторство – некомерцијално – без прераде

4. Ауторство – некомерцијално – делити под истим условима

5. Ауторство – без прераде

6. Ауторство – делити под истим условима

(Молимо да заокружите само једну од шест понуђених лиценци, кратак опис лиценци дат је на полеђини листа).

Потпис докторанда

У Београду, ____9.5.2016.

Tojava huxandet